Setagaya ku, Japan
Setagaya ku, Japan

Time filter

Source Type

A final energy filter includes a first adjustment electrode portion, an intermediate electrode portion, and a second adjustment electrode portion. The final energy filter further includes a power supply unit. The power supply unit is configured such that it applies the voltages separately to the first adjustment electrode portion, the intermediate electrode portion, and the second adjustment electrode portion. The power supply unit applies voltages to an upstream auxiliary electrode portion, a deflection electrode portion and a downstream auxiliary electrode portion, respectively, such that the energy range of ion beam in a first region between the upstream auxiliary electrode portion and the deflection electrode portion is approximately equal to that in a second region between the deflection electrode portion and the downstream auxiliary electrode portion.


Patent
Sen Corporation | Date: 2014-05-27

A high-energy ion implanter includes a beam generation unit that includes an ion source and a mass analyzer, a high-energy multi-stage linear acceleration unit, a high-energy beam deflection unit that changes the direction of a high-energy ion beam toward a wafer, and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The beam transportation unit includes a beam shaper, a high-energy beam scanner, a high-energy beam collimator, and a high-energy final energy filter. Further, the high-energy beam collimator is an electric field type beam collimator that collimates a scan beam while performing the acceleration and the deceleration of a high-energy beam by an electric field.


Patent
Sen Corporation | Date: 2014-05-30

An insulation structure provided among a plurality of electrodes for extraction of an ion beam from a plasma generating section is provided. The insulation structure includes an insulation member including a first part connected to a first electrode and a second part connected to a second electrode and configured to support the first electrode to the second electrode, a first cover surrounding at least a part of the first part to protect the first part from contamination particles, and a second cover surrounding at least a part of the second part to protect the second part from contamination particles. At least one of the first part and the second part is made of a machinable ceramic or a porous ceramic.


Patent
Sen Corporation | Date: 2014-05-29

A high-energy ion implanter includes a high-energy multi-stage linear acceleration unit that accelerates an ion beam so as to generate a high-energy ion beam, a deflection unit that changes the direction of the high-energy ion beam toward a semiconductor wafer, and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The beam transportation unit includes a beam shaper, a high-energy beam scanner, a high-energy electric field type beam collimator, and a high-energy electric field type final energy filter.


A beam current adjuster for an ion implanter includes a variable aperture device which is disposed at an ion beam focus point or a vicinity thereof. The variable aperture device is configured to adjust an ion beam width in a direction perpendicular to an ion beam focusing direction at the focus point in order to control an implanting beam current. The variable aperture device may be disposed immediately downstream of a mass analysis slit. The beam current adjuster may be provided with a high energy ion implanter including a high energy multistage linear acceleration unit.


A beam energy measuring device in an ion implanter includes a parallelism measuring unit that measures a parallelism of an ion beam at a downstream of a beam collimator of the ion implanter and an energy calculating unit that calculates an energy of the ion beam from the measured parallelism. The ion implanter may further include a control unit that controls a high energy multistage linear acceleration unit based on the measured energy of the ion beam so that the ion beam has a target energy.


Patent
Sen Corporation | Date: 2014-06-12

A high-energy ion implanter includes: a beam generation unit that includes an ion source and a mass analyzer; a high-energy multi-stage linear acceleration unit that accelerates an ion beam so as to generate a high-energy ion beam; a high-energy beam deflection unit that changes the direction of the high-energy ion beam toward the wafer; and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The deflection unit is configured by a plurality of deflection electromagnets, and at least a horizontal focusing element is inserted between the plurality of deflection electromagnets.


Patent
SEN Corporation | Date: 2014-06-25

An ion beam measuring device includes: a mask that is used for shaping an original ion beam into a measuring ion beam including a y beam part elongated in a y direction that is perpendicular to a traveling direction of the ion beam and an x beam part elongated in an x direction that is perpendicular to the traveling direction and the y direction; a detection unit that is configured to detect an x-direction position of the y beam part and a y-direction position of the x beam part; and a beam angle calculating unit that is configured to calculate an x-direction beam angle using the x-direction position and a y-direction beam angle using the y-direction position.


In an ion implantation apparatus, an interruption member interrupts an ion beam B in the middle of a beam line. A plasma shower device is provided at the downstream side of the interruption member in the beam line. A control unit causes the interruption member to interrupt the ion beam B during an ignition start period of the plasma shower device. The interruption member may be provided at the upstream side of at least one high-voltage electric field type electrode in the beam line. A gas supply unit may supply a source gas to the plasma shower device. The control unit may start the supply of the source gas from the gas supply unit after the ion beam B is interrupted by the interruption member.


A beam collimator includes a plurality of lens units that are arranged along a reference trajectory so that a beam collimated to the reference trajectory comes out from an exit of the beam collimator. Each of the plurality of lens units forms a bow-shaped curved gap and is formed such that an angle of a beam traveling direction with respect to the reference trajectory is changed by an electric field generated in the bow-shaped curved gap. A vacant space is provided between one lens unit of the plurality of lens units and a lens unit that is adjacent to the lens unit. The vacant space is directed in a transverse direction of the collimated beam in a cross section that is perpendicular to the reference trajectory. An inner field containing the reference trajectory is connected to an outer field of the plurality of lens units through the vacant space.

Loading SEN Corporation collaborators
Loading SEN Corporation collaborators