Durham, NC, United States
Durham, NC, United States

Time filter

Source Type

An optical power transfer device includes a transmitter circuit, including a laser light source that is configured to emit coherent light responsive to operation above a lasing threshold, and is configured to emit incoherent light responsive operation below the lasing threshold. A proximity sensor circuit is coupled to the transmitter circuit and is configured to output a detection signal therefrom responsive to authentication of an optical receiver including at least one photovoltaic cell having surface area of about 4 square millimeters or less within a proximity thereof. The transmitter circuit is configured to operate the laser light source below the lasing threshold to emit the incoherent light responsive to an absence of the detection signal from the proximity sensor circuit. Related devices and methods of operation are also discussed.


An optical data communication and power converter device includes a receiver circuit comprising an optical receiver. The optical receiver includes a photovoltaic device and a photoconductive device arranged within an area that is configured for illumination by a modulated optical signal emitted from a monochromatic light source of a transmitter circuit. The photovoltaic device is configured to generate electric current responsive to the illumination of the area by the modulated optical signal. The photoconductive device is configured to generate a data signal, distinct from the electric current, responsive to the illumination of the area by the modulated optical signal. A reverse bias voltage may be applied to the photoconductive device by the photovoltaic device, independent of an external voltage source. Related devices and methods of operation are also discussed.


Patent
Semprius and University of Illinois at Urbana - Champaign | Date: 2016-06-28

In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.


Patent
Semprius and University of Illinois at Urbana - Champaign | Date: 2016-06-28

In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.


Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. The semiconductor active layer and the sacrificial layer may be selectively etched in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. The capping layer and the first portion of the semiconductor active layer may be selectively etched to thereby expose the sacrificial layer. The sacrificial layer may be selectively removed from between the first portion of the semiconductor active layer and the handling substrate to thereby define a suspended integrated circuit chip encapsulated by the capping layer.


A concentrator-type photovoltaic module includes a plurality of photovoltaic cells having respective surface areas of less than about 4 square millimeters (mm) electrically interconnected in series and/or parallel on a backplane surface, and an array of concentrating optical elements having respective aperture dimensions of less than about 30 mm and respective focal lengths of less than about 50 mm. The array of concentrating optical elements is positioned over the photovoltaic cells based on the respective focal lengths to concentrate incident light on the photovoltaic cells, and is integrated on the backplane surface by at least one spacer structure on the backplane surface. Related devices, operations, and fabrication methods are also discussed.


Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. The semiconductor active layer and the sacrificial layer may be selectively etched in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. The capping layer and the first portion of the semiconductor active layer may be selectively etched to thereby expose the sacrificial layer. The sacrificial layer may be selectively removed from between the first portion of the semiconductor active layer and the handling substrate to thereby define a suspended integrated circuit chip encapsulated by the capping layer.


A large-format substrate with distributed control elements is formed by providing a substrate and a wafer, the wafer having a plurality of separate, independent chiplets formed thereon; imaging the wafer and analyzing the wafer image to determine which of the chiplets are defective; removing the defective chiplet(s) from the wafer leaving remaining chiplets in place on the wafer; printing the remaining chiplet(s) onto the substrate forming empty chiplet location(s); and printing additional chiplet(s) from the same or a different wafer into the empty chiplet location(s).


An optical power converter device includes a light source configured to emit monochromatic light, and a multi-junction photovoltaic cell including respective photovoltaic cell layers having different bandgaps and/or thicknesses. The respective photovoltaic cell layers are electrically connected to collectively provide an output voltage and are vertically stacked relative to a surface of the multi-junction photovoltaic cell that is arranged for illumination by the monochromatic light from the light source. Responsive to the illumination of the surface by the monochromatic light from the light source, the respective photovoltaic cell layers are configured to generate respective output photocurrents that are substantially equal. Related devices and methods of operation are also discussed.


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase I | Award Amount: 149.75K | Year: 2015

ABSTRACT:We propose an ultra-low profile hybrid CPV concept that combines multi-junction (MJ) CPV cells capable of 40% efficiency at 1 sun with a low-cost single-junction PV backplane in a design that is lightweight, based on concentration ratios >100X and has a panel thickness 500 W/kg and a wide acceptance angle of >4.0. The low-profile design, combined with world record performance, will yield W/m3 metrics that are unprecedented for space photovoltaics. Use of concentrating optics enables dramatic (order of magnitude) cost savings through reduction in III-V material usage, while also improving radiation shielding. Rigidity is provided by the lens array combined with a lightweight honeycomb composite. Key innovations include: (1) low profile optics using monolithic, ultra-thin, lightweight lens arrays; (2) microscale 6 junction solar cells with 40% efficiency (AM0) at 1sun and high concentration efficiency of >46%, which are stacked by (3) micro-transfer printing directly onto (4) COTS c-Si cells. The use of larger area c-Si allows the design to generate power without solar tracking. This capability is important during deployment and mitigates the risks associated with a loss of tracking accuracy.BENEFIT:The research and development will produce light-weight solar arrays with significantly higher specific power densities (W/m3, W/m2, W/kg) and lower costs than what is available at present or is anticipated to be available in the foreseeable future. Concentrator configurations increase the radiation hardness of the solar arrays of the research and development. The outcome of the proposed work is expected to be applicable for solar power generation in commercial spacecraft.

Loading Semprius collaborators
Loading Semprius collaborators