Durham, NC, United States
Durham, NC, United States
SEARCH FILTERS
Time filter
Source Type

An optical power transfer device includes a transmitter circuit, including a laser light source that is configured to emit coherent light responsive to operation above a lasing threshold, and is configured to emit incoherent light responsive operation below the lasing threshold. A proximity sensor circuit is coupled to the transmitter circuit and is configured to output a detection signal therefrom responsive to authentication of an optical receiver including at least one photovoltaic cell having surface area of about 4 square millimeters or less within a proximity thereof. The transmitter circuit is configured to operate the laser light source below the lasing threshold to emit the incoherent light responsive to an absence of the detection signal from the proximity sensor circuit. Related devices and methods of operation are also discussed.


Patent
University of Illinois at Urbana - Champaign and Semprius | Date: 2017-01-10

Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.


Patent
University of Illinois at Urbana - Champaign and Semprius | Date: 2017-01-10

Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.


Patent
University of Illinois at Urbana - Champaign and Semprius | Date: 2017-01-10

Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.


An optical data communication and power converter device includes a receiver circuit comprising an optical receiver. The optical receiver includes a photovoltaic device and a photoconductive device arranged within an area that is configured for illumination by a modulated optical signal emitted from a monochromatic light source of a transmitter circuit. The photovoltaic device is configured to generate electric current responsive to the illumination of the area by the modulated optical signal. The photoconductive device is configured to generate a data signal, distinct from the electric current, responsive to the illumination of the area by the modulated optical signal. A reverse bias voltage may be applied to the photoconductive device by the photovoltaic device, independent of an external voltage source. Related devices and methods of operation are also discussed.


Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. The semiconductor active layer and the sacrificial layer may be selectively etched in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. The capping layer and the first portion of the semiconductor active layer may be selectively etched to thereby expose the sacrificial layer. The sacrificial layer may be selectively removed from between the first portion of the semiconductor active layer and the handling substrate to thereby define a suspended integrated circuit chip encapsulated by the capping layer.


Patent
Semprius and University of Illinois at Urbana - Champaign | Date: 2016-06-28

In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.


Patent
Semprius and University of Illinois at Urbana - Champaign | Date: 2016-06-28

In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.


A concentrator-type photovoltaic module includes a plurality of photovoltaic cells having respective surface areas of less than about 4 square millimeters (mm) electrically interconnected in series and/or parallel on a backplane surface, and an array of concentrating optical elements having respective aperture dimensions of less than about 30 mm and respective focal lengths of less than about 50 mm. The array of concentrating optical elements is positioned over the photovoltaic cells based on the respective focal lengths to concentrate incident light on the photovoltaic cells, and is integrated on the backplane surface by at least one spacer structure on the backplane surface. Related devices, operations, and fabrication methods are also discussed.


An optical power converter device includes a light source configured to emit monochromatic light, and a multi-junction photovoltaic cell including respective photovoltaic cell layers having different bandgaps and/or thicknesses. The respective photovoltaic cell layers are electrically connected to collectively provide an output voltage and are vertically stacked relative to a surface of the multi-junction photovoltaic cell that is arranged for illumination by the monochromatic light from the light source. Responsive to the illumination of the surface by the monochromatic light from the light source, the respective photovoltaic cell layers are configured to generate respective output photocurrents that are substantially equal. Related devices and methods of operation are also discussed.

Loading Semprius collaborators
Loading Semprius collaborators