Semiconductor Energy Laboratory Co.

Atsugi, Japan

Semiconductor Energy Laboratory Co.

Atsugi, Japan

Time filter

Source Type

Patent
Semiconductor Energy Laboratory Co. | Date: 2017-04-05

A method for manufacturing a semiconductor device, comprising the steps of: forming an oxide semiconductor layer over an insulating surface, the oxide semiconductor layer including a channel formation region, the oxide semiconductor layer containing indium, tin and zinc; implanting oxygen ions into the oxide semiconductor layer; performing a first heat treatment on the oxide semiconductor layer in an atmosphere containing nitrogen; performing a second heat treatment on the oxide semiconductor layer in an atmosphere containing oxygen so that the oxide semiconductor layer includes excess oxygen and the oxide semiconductor layer is capable of compensating an oxygen deficiency in the oxide semiconductor layer; wherein the second heat treatment is performed after the first heat treatment.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-01-26

A novel element is provided. A novel film formation method is provided. A novel element manufacturing method is provided. Furthermore, a film including graphene is formed at low cost and high yield. The element includes a first electrode and a second electrode located apart from the first electrode. The first electrode and the second electrode include graphene. The film including graphene is formed through a first step of forming a film including graphene oxide over a substrate, a second step of immersing the film including graphene oxide in an acidic solution, and a third step of reducing graphene oxide included in the film including graphene oxide. Furthermore, before graphene oxide included in the film including graphene oxide is reduced, the film including graphene oxide is selectively removed by a photolithography technique.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-01-27

An apparatus for forming a film having high uniformity in its film thickness distribution is provided. An evaporation source is used in which an evaporation cell, or a plurality of evaporation cells, having a longitudinal direction is formed, and by moving the evaporation source in a direction perpendicular to the longitudinal direction of the evaporation source, a thin film is deposited on a substrate. By making the evaporation source longer, the uniformity of the film thickness distribution in the longitudinal direction is increased. The evaporation source is moved, film formation is performed over the entire substrate, and therefore the uniformity of the film thickness distribution over the entire substrate can be increased.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-02-01

An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-01-27

Favorable electrical characteristics are given to a semiconductor device. Furthermore, a semiconductor device having high reliability is provided. One embodiment of the present invention is an oxide semiconductor film having a plurality of electron diffraction patterns which are observed in such a manner that a surface where the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm. The plurality of electron diffraction patterns include 50 or more electron diffraction patterns which are observed in different areas, the sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%, the first electron diffraction patterns account for 90% or more, the first electron diffraction pattern includes observed points which indicates that a c-axis is oriented in a direction substantially perpendicular to the surface where the oxide semiconductor film is formed.


A change in electrical characteristics is inhibited and reliability is improved in a semiconductor device using a transistor including an oxide semiconductor. One embodiment of a semiconductor device including a transistor includes a gate electrode, first and second insulating films over the gate electrode, an oxide semiconductor film over the second insulating film, and source and drain electrodes electrically connected to the oxide semiconductor film. A third insulating film is provided over the transistor and a fourth insulating film is provided over the third insulating film. The third insulating film includes oxygen. The fourth insulating film includes nitrogen. The amount of oxygen released from the third insulating film is 110^(19)/cm^(3 )or more by thermal desorption spectroscopy, which is estimated as oxygen molecules. The amount of oxygen molecules released from the fourth insulating film is less than 110^(19)/cm^(3).


A light-emitting element which uses a plurality of kinds of light-emitting dopants emitting light in a balanced manner and has high emission efficiency is provided. Further, a light-emitting device, a display device, an electronic device, and a lighting device each having reduced power consumption by using the above light-emitting element are provided. A light-emitting element which includes a plurality of light-emitting layers including different phosphorescent materials is provided. In the light-emitting element, the light-emitting layer which includes a light-emitting material emitting light with a long wavelength includes two kinds of carrier-transport compounds having properties of transporting carriers with different polarities. Further, in the light-emitting element, the triplet excitation energy of a host material included in the light-emitting layer emitting light with a short wavelength is higher than the triplet excitation energy of at least one of the carrier-transport compounds.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-02-08

It is an object of the present invention to provide a method for preventing a breaking and poor contact, without increasing the number of steps, thereby forming an integrated circuit with high driving performance and reliability. The present invention applies a photo mask or a reticle each of which is provided with a diffraction grating pattern or with an auxiliary pattern formed of a semi-translucent film having a light intensity reducing function to a photolithography step for forming wires in an overlapping portion of wires. And a conductive film to serve as a lower wire of a two-layer structure is formed, and then, a resist pattern is formed so that a first layer of the lower wire and a second layer narrower than the first layer are formed for relieving a steep step.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-02-06

Display of a display device is made less likely to appear divided when a plurality of display panels are used as one screen. Provided is a display device including two display units and a foldable housing that includes a joint portion between the two display units and supports the two display units. Each display unit includes a display panel including a display region and a non-display region and a support having a first surface overlapped with the display region and a second surface that meets the first surface and is overlapped with the non-display region. The two display units are placed in the housing in an opened state such that the first surfaces of the supports face the same direction and the second surfaces of the supports face each other.


Patent
Semiconductor Energy Laboratory Co. | Date: 2017-02-02

A semiconductor device includes a gate electrode, a gate insulating film which includes oxidized material containing silicon and covers the gate electrode, an oxide semiconductor film provided to be in contact with the gate insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the gate insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region. At least the first region includes a crystal portion.

Loading Semiconductor Energy Laboratory Co. collaborators
Loading Semiconductor Energy Laboratory Co. collaborators