South Korea
South Korea

Time filter

Source Type

Disclosed is a nitride-based light emitting device using powders of a material having a Wurtzite lattice structure, such as ZnO powders. The nitride-based light emitting device includes a growth substrate, a lattice buffer layer formed on the growth substrate, and a light emitting structure formed on the lattice buffer layer and having a plurality of nitride layers stacked therein, wherein the lattice buffer layer is formed of powders of a material having a Wurtzite lattice structure. The lattice buffer layer is formed of ZnO powders, thereby minimizing occurrence of dislocations caused by a difference in lattice constant between a nitride layer and the growth substrate during growth of the nitride layer. A method of manufacturing the same is also disclosed.


Disclosed is a nitride-based light emitting device using a silicon substrate. The nitride-based light emitting device includes a silicon (Si) substrate, a seed layer for nitride growth formed on the silicon substrate, and a light emitting structure formed on the seed layer and having a plurality of nitride layers stacked therein. The seed layer for nitride growth is comprised of GaN powders, thereby minimizing occurrence of dislocations caused by a difference in lattice constant between a nitride layer and the silicon substrate. A method of manufacturing the same is also disclosed.


Patent
Semi Materials Co. | Date: 2012-01-11

A plasma texturing apparatus for a solar cell includes a susceptor having engagement projections to prevent a wafer mounted therein from slipping outward or fluctuating back and forth when aligning the wafer over a cathode for plasma texturing; a focus ring functioning to confine plasma when conducting a plasma texturing process; and a clamp placed on an inner surface of the focus ring in such a way as to have a downward slope, and having one end which is coupled to the focus ring and the other end which faces away from the one end, is formed to be pointed and functions to squeeze and support peripheral portions of the wafer.


Disclosed is a nitride-based light emitting device capable of improving crystallinity and brightness. The nitride-based light emitting device includes a growth substrate, a lattice buffer layer formed on the growth substrate, a p-type nitride layer formed on the lattice buffer layer, a light emitting active layer formed on the p-type nitride layer, and an n-type ZnO layer formed on the light emitting active layer. The lattice buffer layer is formed of powders of a material having a Wurtzite lattice structure. The lattice buffer layer is formed of ZnO powders, thereby minimizing generation of dislocations during nitride growth. A method of manufacturing the same is also disclosed.


Disclosed herein is a method of manufacturing GaN powders using a GaN etching product produced during manufacture of a GaN-based light emitting device. The method includes collecting a GaN etching product produced during etching of the GaN-based light emitting device, cleaning the collected GaN etching product; heating the cleaned GaN etching product to remove indium (In) components from the GaN etching product, and pulverizing the GaN etching product having the indium components removed therefrom into powders. A nitride-based light emitting device using the GaN powders is also disclosed.


Disclosed is a method for manufacturing a template. The method includes growing a first nitride layer containing a Group-III material on a substrate; forming a plurality of etch barriers having different etching characteristics from the first nitride layer on the first nitride layer; forming a pillar-shaped nano structure by etching the first nitride layer in a pattern of the etch barriers using a chloride-based gas; and forming the nitride buffer layer having a plurality of voids formed therein by growing a second nitride layer on top of the nano structure. A method for manufacturing a nitride-based semiconductor light emitting device using the template is also disclosed.


Disclosed herein is a method for manufacturing a template. The method includes growing a first nitride layer on a substrate; etching a top surface of the first nitride layer by supplying a chloride-based etching gas thereto; forming a plurality of first voids by growing a second nitride layer on the top surface of the first nitride layer; etching a top surface of the second nitride layer by supplying the etching gas thereto; and forming a plurality of second voids by growing a third nitride layer on the top surface of the second nitride layer. A method for manufacturing a nitride-based semiconductor light emitting device using the template is also disclosed. As a result, stress between lattices and dislocation defects are reduced by a plurality of voids formed in a nitride buffer layer, thereby improving quality of nitride layers grown in a template. In the case where a light emitting device is manufactured using the template, it is possible to improve workability of the manufacturing process and to enhance luminous efficacy of the light emitting device.


Disclosed is a nitride-based light emitting device having an inverse p-n structure in which a p-type nitride layer is first formed on a growth substrate. The light emitting device includes a growth substrate, a powder type seed layer for nitride growth formed on the growth substrate, a p-type nitride layer formed on the seed layer for nitride growth, a light emitting active layer formed on the p-type nitride layer, and an n-type ZnO layer formed on the light emitting active layer. The p-type nitride layer is first formed on the growth layer and the n-type ZnO layer having a relatively low growth temperature is then formed thereon instead of an n-type nitride layer, thereby providing excellent crystallinity and high brightness. A method of manufacturing the same is also disclosed.


Disclosed is a method of manufacturing a nitride-based light emitting device, in which a patterned lattice buffer layer is formed to minimize dislocation density upon growth of a nitride layer and an air gap is formed to enhance brightness of the light emitting device. The method includes depositing a material having a Wurtzite lattice structure on a substrate to form a deposition layer, forming an etching pattern on a surface of the deposition layer to form a patterned lattice buffer layer, and growing a nitride layer on the patterned lattice buffer layer. During the growth of the nitride layer, the patterned lattice buffer layer is removed to form an air gap at a portion of the nitride layer from which the patterned lattice buffer layer is removed. A nitride-based light emitting device manufactured thereby is also disclosed.


Patent
Semi Materials Co. | Date: 2012-03-14

A plasma texturing reaction apparatus includes a chamber including a dielectric window and a chamber body and receiving a solar cell wafer to be textured, a polygonal induction coil provided at an outer upper portion of the dielectric window to generate a magnetic field for generating plasma, a high frequency low power supply unit that supplies a cathode of the chamber with high frequency power corresponding to process conditions, and a high frequency source power supply unit that supplies the polygonal induction coil with high frequency power.

Loading Semi Materials Co. collaborators
Loading Semi Materials Co. collaborators