Entity

Time filter

Source Type

Funaishikawa, Japan

Seijoh University is a public university in Tōkai, Aichi, Japan. The university opened in April 2002 but the predecessor of the school, Ishida Education Group, was founded in 1941. Wikipedia.


Kubo K.-Y.,Seijoh University | Iinuma M.,Asahi University | Chen H.,Gifu University
BioMed Research International | Year: 2015

Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing) is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans. © 2015 Kin-ya Kubo et al.


The senescence-accelerated mouse strain P6 (SAMP6) is a model of senile osteoporosis, which possesses many features of senile osteoporosis in humans. So far, little is known about the systemic bone microstructural changes that occur at the cervical, thoracic, and lumbar vertebrae. In this study, we therefore investigated segmental variations of vertebral trabecular bone mineral density (BMD) and three-dimensional microstructure in SAMP6 and the normal control mouse (SAMR1) at 12. months of age using quantitative micro computed tomography (micro-CT) and image analysis software. The vertebral height and vertebral cross-sectional area (CSA) increased, while vertebral trabecular BMD and trabecular bone volume fraction (BV/TV) decreased from the cervical to lumbar spine both in SAMR1 and SAMP6. As compared with SAMR1, the thoracic vertebral CSA had a tendency to be low and the lumbar vertebral CSA was significantly declined in SAMP6. The vertebral trabecular BMD, BV/TV, trabecular thickness (Tb.Th), and trabecular number (Tb.N) significantly decreased in cervical, thoracic and lumbar spine of SAMP6. Trabecular bone pattern factor (TBPf) was higher at the lumbar spine and the structure model index (SMI) of the lower thoracic and lumbar spine was higher in SAMP6. These results indicate that vertebral trabecular bone microstructures are remarkably heterogeneous throughout the spine in both SAMR1 and SAMP6. The decrease of vertebral trabecular bone density in SAMP6 advanced faster caudally than cranially within the spine, similar phenomena were observed in humans. These findings highlight the relevance of SAMP6 for studies of vertebral fragility associated with senile osteoporosis. © 2012 Elsevier Inc.


Chen H.,Gifu University | Iinuma M.,Asahi University | Onozuka M.,Nippon Sport Science University | Kubo K.-Y.,Seijoh University
International Journal of Medical Sciences | Year: 2015

Mastication (chewing) is important not only for food intake, but also for preserving and promoting the general health. Recent studies have showed that mastication helps to maintain cognitive functions in the hippocampus, a central nervous system region vital for spatial memory and learning. The purpose of this paper is to review the recent progress of the association between mastication and the hippocampus-dependent cognitive function. There are multiple neural circuits connecting the masticatory organs and the hippocampus. Both animal and human studies indicated that cognitive functioning is influenced by mastication. Masticatory dysfunction is associated with the hippocampal morphological impairments and the hippocampus-dependent spatial memory deficits, especially in elderly. Mastication is an effective behavior for maintaining the hippocampus-dependent cognitive performance, which deteriorates with aging. Therefore, chewing may represent a useful approach in preserving and promoting the hippocampus-dependent cognitive function in older people. We also discussed several possible mechanisms involved in the interaction between mastication and the hippocampal neurogenesis and the future directions for this unique fascinating research. © 2015 Ivyspring International Publisher.


Chen H.,Gifu University | Washimi Y.,Aichi University | Kubo K.-Y.,Seijoh University | Onozuka M.,Kanagawa Dental College
Histology and Histopathology | Year: 2011

Despite increasing interest in age- and gender-related bone alterations, data on trabecular microstructure at the proximal tibia are scarce. The aim of this study was to identify trabecular microstructural change at the human proximal tibia with age and gender, using micro-computed tomography (micro-CT) and scanning electron microscopy (SEM). Fifty-six proximal tibias from 28 Japanese men and women (57-98 years of age) were used in this study. The subjects were chosen to give an even age and gender distribution. Both women and men were divided into three age groups, middle (57- 68 years), old (72-82 years) and elderly (87-98 years) groups. The trabecular bone specimens from the medial compartment of the proximal tibial metaphysis were examined. Trabecular bone mineral density (BMD), bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) decreased between the middle-aged and elderly groups similarly in women and men. However, trabecular number (Tb.N) decreased by 13% between the middle-aged and elderly groups in women and nearly double that in men. As compared with women, men had higher BV/TV and lower trabecular separation (Tb.Sp) in the old age and elderly groups, and higher Tb.N and connectivity density (Conn.D) in the elderly group. Increased trabecular resorbing surfaces, perforated or disconnected trabeculae and microcallus formations were observed with age. These findings indicate that both BMD and BV/TV decreased at the proximal tibia with age similarly for women and men, but significant differences between women and men were observed for some microstructural parameters. These findings illustrate potential mechanisms underlying osteoporotic proximal tibial fracture.


Furuzawa M.,Asahi University | Chen H.,Gifu University | Fujiwara S.,Asahi University | Yamada K.,Nagoya Womens University | Kubo K.-Y.,Seijoh University
Experimental Gerontology | Year: 2014

Chronic mild stress is a risk factor for osteoporosis and chewing inhibits the stress response. We examined the effect of chewing on chronic stress-induced bone loss and bone microstructural deterioration in mice. The senescence-accelerated mouse strain P8 (SAMP8) was randomly divided into control, stress, and stress with chewing groups of fifteen animals each. Mice in the stress and stress with chewing groups were placed in a ventilated restraint tube for 60. minutes, twice a day for 4. weeks. The restrained mice were simultaneously subjected daily to one of the following stressors: water immersion, physical shaking and flashing lights. Mice in the stress with chewing group were allowed to chew a wooden stick during the experimental period. After the experiment, the bone response was evaluated using quantitative micro computed tomography, bone histomorphometry, and biochemical markers. Exposure of SAMP8 mice to chronic stress resulted in significant increase of the blood corticosterone and noradrenaline levels, and adrenal weight. The bone resorption was activated and the bone formation was suppressed. Trabecular bone volume and trabecular number were decreased in both the vertebra and distal femur of the stress group. Chewing under chronic stress prevented the increase in the blood corticosterone and noradrenaline levels, attenuated the reduced bone formation and increased bone resorption, improved the trabecular bone loss and bone microstructural deterioration induced by chronic mild stress. These findings indicate that chewing can ameliorate chronic stress-induced bone loss in SAMP8 mice. Thus, chewing may represent a useful method preventing and/or treating chronic stress-related osteoporosis. © 2014 Elsevier Inc.

Discover hidden collaborations