Time filter

Source Type

Ladu F.,New York University | Bartolini T.,New York University | Panitz S.G.,New York University | Chiarotti F.,Section of Neurotoxicology and Neuroendocrinology | And 3 more authors.
Zebrafish | Year: 2015

Emotional disturbances constitute a major health issue affecting a considerable portion of the population in western countries. In this context, animal models offer a relevant tool to address the underlying biological determinants and to screen novel therapeutic strategies. While rodents have traditionally constituted the species of choice, zebrafish are now becoming a viable alternative. As zebrafish gain momentum in biomedical sciences, considerable efforts are being devoted to developing high-throughput behavioral tests. Here, we present a comparative study of zebrafish behavioral response to fear-evoking stimuli offered via three alternative methodologies. Specifically, in a binary-choice test, we exposed zebrafish to an allopatric predator Astronotus ocellatus, presented in the form of a live subject, a robotic replica, and a computer-animated image. The robot's design and operation were inspired by the morphology and tail-beat motion of its live counterpart, thereby offering a consistent three-dimensional stimulus to focal fish. The computer-animated image was also designed after the live subject to replicate its appearance. We observed that differently from computer-animated images, both the live predator and its robotic replica elicited robust avoidance response in zebrafish. In addition, in response to the robot, zebrafish exhibited increased thrashing behavior, which is considered a valid indicator of fear. Finally, inter-individual response to a robotic stimulus is more consistent than that shown in response to live stimuli and animated images, thereby increasing experimental statistical power. Our study supports the view that robotic stimuli can constitute a promising experimental tool to elicit targeted behavioral responses in zebrafish. © Copyright 2015, Mary Ann Liebert, Inc. 2015. Source

Frye C.,University at Albany | Bo E.,University of Turin | Bo E.,Neuroscience Institute Cavalieri Ottolenghi NICO | Calamandrei G.,Section of Neurotoxicology and Neuroendocrinology | And 12 more authors.
Journal of Neuroendocrinology | Year: 2012

Some environmental contaminants interact with hormones and may exert adverse consequences as a result of their actions as endocrine disrupting chemicals (EDCs). Exposure in people is typically a result of contamination of the food chain, inhalation of contaminated house dust or occupational exposure. EDCs include pesticides and herbicides (such as dichlorodiphenyl trichloroethane or its metabolites), methoxychlor, biocides, heat stabilisers and chemical catalysts (such as tributyltin), plastic contaminants (e.g. bisphenol A), pharmaceuticals (i.e. diethylstilbestrol; 17α-ethinylestradiol) or dietary components (such as phytoestrogens). The goal of this review is to address the sources, effects and actions of EDCs, with an emphasis on topics discussed at the International Congress on Steroids and the Nervous System. EDCs may alter reproductively-relevant or nonreproductive, sexually-dimorphic behaviours. In addition, EDCs may have significant effects on neurodevelopmental processes, influencing the morphology of sexually-dimorphic cerebral circuits. Exposure to EDCs is more dangerous if it occurs during specific 'critical periods' of life, such as intrauterine, perinatal, juvenile or puberty periods, when organisms are more sensitive to hormonal disruption, compared to other periods. However, exposure to EDCs in adulthood can also alter physiology. Several EDCs are xenoestrogens, which can alter serum lipid concentrations or metabolism enzymes that are necessary for converting cholesterol to steroid hormones. This can ultimately alter the production of oestradiol and/or other steroids. Finally, many EDCs may have actions via (or independent of) classic actions at cognate steroid receptors. EDCs may have effects through numerous other substrates, such as the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the retinoid X receptor, signal transduction pathways, calcium influx and/or neurotransmitter receptors. Thus, EDCs, from varied sources, may have organisational effects during development and/or activational effects in adulthood that influence sexually-dimorphic, reproductively-relevant processes or other functions, by mimicking, antagonising or altering steroidal actions. © 2011 Blackwell Publishing Ltd. Source

De Filippis B.,Section of Behavioural Neuroscience | Ricceri L.,Section of Neurotoxicology and Neuroendocrinology | Laviola G.,Section of Behavioural Neuroscience
Genes, Brain and Behavior | Year: 2010

In a mouse model of Rett syndrome (RTT) which expresses a truncated form of methyl-CpG-binding protein 2 (Mecp2) gene (Mecp2-308), we performed a neurobehavioral evaluation across the life span, starting from soon after birth till adulthood. A focus was made on those developmental phases and behavioral domains which have not been previously investigated. The results evidenced subtle anomalies on postnatal days (pnds) 3 to 9 (so-called presymptomatic phase) in spontaneous movements by hemizygous neonatal male mice. Specifically as early as pnd 3, mutant pups exhibited more intense curling and more side responses and on pnd 9 more pivoting and head rising behaviors than wild type (wt) littermates. A significant decrease in ultrasonic vocalization rate, also emerged in Mecp2-308 pups. The same mice were also characterized by increased anxiety-like behaviors (open-field and zero-maze tests) during the early symptomatic phase, in the absence of changes in cognitive passive-avoidance task and rotarod performances. Upon the clearly symptomatic stage, 5-month-old Mecp2-308 mice were also associated with reduced spontaneous home-cage motor activity, motor coordination impairments (rotarod and dowel tests), and a more marked profile of d-amphetamine (10 mg/kg) released stereotyped behavioral syndrome than wt mice. Present results provide an interesting timeline of the progression of symptoms in the Mecp2-308 model and emphasize the need for increased attention to the presymptomatic phase which may be especially informative in mouse models of human neurodevelopmental disorders. This analysis has provided evidence of precocious behavioral markers of RTT and has identified an early developmental window of opportunities on which potential therapies could be investigated. © 2009 The Authors. Source

Schaevitz L.,Tufts University | Berger-Sweeney J.,Tufts University | Ricceri L.,Section of Neurotoxicology and Neuroendocrinology
Neuroscience and Biobehavioral Reviews | Year: 2014

Folate and choline, two nutrients involved in the one-carbon metabolic cycle, are intimately involved in regulating DNA integrity, synthesis, biogenic amine synthesis, and methylation. In this review, we discuss evidence that folate and choline play an important role in normal cognitive development, and that altered levels of these nutrients during periods of high neuronal proliferation and synaptogenesis can result in diminished cognitive function. We also discuss the use of these nutrients as therapeutic agents in a spectrum of developmental disorders in which intellectual disability is a prominent feature, such as in Fragile-X, Rett syndrome, Down syndrome, and Autism spectrum disorders. A survey of recent literature suggests that nutritional supplements have mild, but generally consistent, effects on improving cognition. Intervening with supplements earlier rather than later during development is more effective in improving cognitive outcomes. Given the mild improvements seen after treatments using nutrients alone, and the importance of the genetic profile of parents and offspring, we suggest that using nutraceutics early in development and in combination with other therapeutics are likely to have positive impacts on cognitive outcomes in a broad spectrum of complex neurodevelopmental disorders. © 2014 Elsevier Ltd. Source

Fuso A.,University of Rome La Sapienza | Nicolia V.,University of Rome La Sapienza | Ricceri L.,Section of Neurotoxicology and Neuroendocrinology | Cavallaro R.A.,University of Rome La Sapienza | And 5 more authors.
Neurobiology of Aging | Year: 2012

Methylation reactions linked to homocysteine in the one-carbon metabolism are increasingly elicited in Alzheimer's disease, although the association of hyperhomocysteinemia and of low B vitamin levels with the disease is still debated. We previously demonstrated that hyperhomocysteinemia and DNA hypomethylation induced by B vitamin deficiency are associated with PSEN1 and BACE1 overexpression and amyloid production. The present study is aimed at assessing S-adenosylmethionine effects in mice kept under a condition of B vitamin deficiency. To this end, TgCRND8 mice and wild-type littermates were assigned to control or B vitamin deficient diet, with or without S-adenosylmethionine supplementation. We found that S-adenosylmethionine reduced amyloid production, increased spatial memory in TgCRND8 mice and inhibited the upregulation of B vitamin deficiency-induced PSEN1 and BACE1 expression and Tau phosphorylation in TgCRND8 and wild-type mice. Furthermore, S-adenosylmethionine treatment reduced plaque spreading independently on B vitamin deficiency. These results strengthen our previous observations on the possible role of one-carbon metabolism in Alzheimer's disease, highlighting hyperhomocysteinemia-related mechanisms in dementia onset/progression and encourage further studies aimed at evaluating the use of S-adenosylmethionine as a potential candidate drug for the treatment of the disease. © 2012 Elsevier Inc. Source

Discover hidden collaborations