Entity

Time filter

Source Type

San Fedele Superiore, Italy

Guida V.,Mendel Laboratory | Ferese R.,Mendel Laboratory | Ferese R.,University of Rome La Sapienza | Rocchetti M.,University of Milan Bicocca | And 15 more authors.
European Journal of Human Genetics | Year: 2013

GJA5 gene (MIM no. 121013), localized at 1q21.1, encodes for the cardiac gap junction protein connexin 40. In humans, copy number variants of chromosome 1q21.1 have been associated with variable phenotypes comprising congenital heart disease (CHD), including isolated TOF. In mice, the deletion of Gja5 can cause a variety of complex CHDs, in particular of the cardiac outflow tract, corresponding to TOF in many cases. In the present study, we screened for mutations in the GJA5 gene 178 unrelated probands with isolated TOF. A heterozygous nucleotide change (c.793C>T) in exon 2 of the gene leading to the p.Pro265Ser variant at the carboxyl-terminus of the protein was found in two unrelated sporadic patients, one with classic anatomy and one with pulmonary atresia. This GJA5 missense substitution was not observed in 1568 ethnically-matched control chromosomes. Immunofluorescent staining and confocal microscopy revealed that cells expressing the mutant protein form sparse or no visible gap-junction plaques in the region of cell-cell contact. Moreover, analysis of the transfer of the gap junction permanent tracer lucifer yellow showed that cells expressing the mutant protein have a reduced rate of dye transfer compared with wild-type cells. Finally, use of a zebrafish model revealed that microinjection of the GJA5-p.Pro265Ser mutant disrupts overall morphology of the heart tube in the 37% (22/60) of embryos, compared with the 6% (4/66) of the GJA5 wild-type-injected embryos. These findings implicate GJA5 gene as a novel susceptibility gene for TOF. © 2013 Macmillan Publishers Limited. All rights reserved. Source


Iorio E.,Section of Molecular and Cellular Imaging | Ricci A.,Section of Molecular and Cellular Imaging | Bagnoli M.,Fondazione Istituto Nazionale Dei Tumori | Pisanu M.E.,Section of Molecular and Cellular Imaging | And 8 more authors.
Cancer Research | Year: 2010

Altered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) could provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. The increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and nontumoral immortalized counterparts (EONT) may derive from (a) enhanced choline transport and choline kinase (ChoK)-mediated phosphorylation, (b) increased PC-specific phospholipase C (PC-plc) activity, and (c) increased intracellular choline production by PC deacylation plus glycerophosphocholine- phosphodiesterase (GPC-pd) or by phospholipase D (pld)-mediated PC catabolism followed by choline phosphorylation. Biochemical, protein, and mRNA expression analyses showed that the most relevant changes in EOC cells were (a) 12-fold to 25-fold ChoK activation, consistent with higher protein content and increased ChoKα (but not ChoKâ) mRNA expression levels; and (b) 5-fold to 17-fold PC-plc activation, consistent with higher, previously reported, protein expression. PC-plc inhibition by tricyclodecan-9-yl-potassium xanthate (D609) in OVCAR3 and SKOV3 cancer cells induced a 30% to 40% reduction of PCho content and blocked cell proliferation. More limited and variable sources of PCho could derive, in some EOC cells, from 2-fold to 4-fold activation of pld or GPC-pd. Phospholipase A2 activity and isoform expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKα mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from patients with EOC. Overall, we showed that the elevated PCho pool detected in EOC cells primarily resulted from upregulation/activation of ChoK and PC-plc involved in PC byosinthesis and degradation, respectively. ©2010 AACR. Source


Paris L.,Section of Molecular and Cellular Imaging | Cecchetti S.,Section of Molecular and Cellular Imaging | Spadaro F.,Section of Molecular and Cellular Imaging | Abalsamo L.,Section of Molecular and Cellular Imaging | And 6 more authors.
Breast Cancer Research | Year: 2010

Introduction: Overexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation.Methods: Localization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab.Results: PC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with HER2 in raft domains. PC-PLC inhibition resulted in enhanced HER2 internalization and lysosomal degradation, inducing downmodulation of HER2 expression on the membrane. Moreover, PC-PLC inhibition resulted in strong retardation of HER2 reexpression on the membrane and a decrease in the overall cellular contents of HER2, HER2-HER3, and HER2-EGFR heterodimers. The PC-PLC inhibitor also induced antiproliferative effects, especially in trastuzumab-resistant cells.Conclusions: The results pointed to PC-PLC inhibition as a potential means to counteract the tumorigenic effects of HER2 amplification and complement the effectiveness of current HER2-targeting therapies. © 2010 Paris et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations