Time filter

Source Type

Medicine Lodge, United States

Goldstein T.C.,University of California at Santa Cruz | Paull E.O.,University of California at Santa Cruz | Ellis M.J.,Section of Breast Oncology | Ellis M.J.,University of Washington | Stuart J.M.,University of California at Santa Cruz
Clinical Cancer Research | Year: 2013

High-throughput genomic data that measures RNA expression, DNA copy number, mutation status, and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. Although the number of possible lesions is vast, different genomic alterations may result in concordant expression and pathway activities, producing common tumor subtypes that share similar phenotypic outcomes. How can these data be translated into medical knowledge that provides prognostic and predictive information? First-generation mRNA expression signatures such as Genomic Health's Oncotype DX already provide prognostic information, but do not provide therapeutic guidance beyond the current standard of care, which is often inadequate in high-risk patients. Rather than building molecular signatures based on gene expression levels, evidence is growing that signatures based on higher-level quantities such as from genetic pathways may provide important prognostic and diagnostic cues. We provide examples of how activities for molecular entities can be predicted from pathway analysis and how the composite of all such activities, referred to here as the "activitome," helps connect genomic events to clinical factors to predict the drivers of poor outcome. © 2013 American Association for Cancer Research. Source

Xu S.,Section of Breast Oncology | Li S.,Section of Breast Oncology | Li S.,Siteman Comprehensive Cancer Center | Guo Z.,Section of Breast Oncology | And 7 more authors.
Molecular Cancer Therapeutics | Year: 2013

Basal-like breast cancer is an aggressive disease for which targeted therapies are lacking. Recent studies showed that basal-like breast cancer is frequently associated with an increased activity of the phosphatidylinositol 3-kinase (PI3K) pathway, which is critical for cell growth, survival, and angiogenesis. To investigate the therapeutic potential of PI3K pathway inhibition in the treatment of basal-like breast cancer, we evaluated the antitumor effect of themTORinhibitor MK-8669 andAKTinhibitor MK-2206 inWU-BC4and WU-BC5, two patient-derived xenograft models of basal-like breast cancer. Both models showed high levels of AKT phosphorylation and loss of PTEN expression. We observed a synergistic effect of MK-8669 and MK-2206 on tumor growth and cell proliferation in vivo. In addition, MK-8669 and MK-2206 inhibited angiogenesis as determined by CD31 immunohistochemistry. Biomarker studies indicated that treatment with MK-2206 inhibited AKT activation induced by MK-8669. To evaluate the effect of loss of PTEN on tumor cell sensitivity to PI3K pathway inhibition, we knocked down PTEN in WU-BC3, a basal-like breast cancer cell line with intact PTEN. Compared with control (GFP) knockdown, PTEN knockdown led to a more dramatic reduction in cell proliferation and tumor growth inhibition in response to MK-8669 and MK-2206 both in vitro and in vivo. Furthermore, a synergistic effect of these two agents on tumor volume was observed in WU-BC3 with PTEN knockdown. Our results provide a preclinical rationale for future clinical investigation of this combination in basal-like breast cancer with loss of PTEN. Mol Cancer Ther; 12(8); 1665-75. © 2013 AACR. Source

Discover hidden collaborations