Section of Biochemistry

Science, Italy

Section of Biochemistry

Science, Italy
SEARCH FILTERS
Time filter
Source Type

Piccinini M.,Section of Biochemistry | Buccinna B.,Section of Biochemistry | De Marco G.,Section of Biochemistry | De Marco G.,University of Turin | And 6 more authors.
Brain Pathology | Year: 2010

Previously, myelin from cerebral white matter (CWM) of two subjects of a family with orthochromatic adult-onset autosomal-dominant leukodystrophy (ADLD) was disclosed to exhibit defective large isoform of myelin-associated glycoprotein (L-MAG) and patchy distribution only in the elder subject. L-MAG and neural cell adhesion molecule (N-CAM) (N-CAM 180, 140, and 120) are structurally related and concur to myelin/axon interaction. In early developmental stages, in neurons and glia N-CAM is converted into polysialylated (PSA)-NCAM by two sialyltransferases sialyltransferase-X (STX) and polysialyltransferase-1 (PST). Notably, PSA-NCAM disrupts N-CAM adhesive properties and is nearly absent in the adult brain. Here, CWM extracts and myelin of the two subjects were searched for the expression pattern of the N-CAM isoforms and PSA-NCAM, and their CWM was evaluated for N-CAM, STX and PST gene copy number and gene expression as mRNA. Biochemically, we disclosed that in CWM extracts and myelin from both subjects, PSA-NCAM accumulates, N-CAM 180 considerably increases, N-CAM 140 is modestly modified and N-CAM 120 remarkably decreases; duplication of genes encoding N-CAM, STX and PST was not revealed, whereas PST mRNA was clearly increased. Immunohistochemically, in CWM of both subjects, we found an unusually diffuse accumulation of PSA-NCAM without inflammation markers. PSA-NCAM persistence, up-regulated PST mRNA and previously uncovered defective L-MAG may be early pathogenetic events in this ADLD form. © 2009 International Society of Neuropathology.


Pozzolini M.,University of Genoa | Scarfi S.,University of Genoa | Mussino F.,Section of Biochemistry | Salis A.,University of Genoa | And 5 more authors.
Journal of Biotechnology | Year: 2015

Prolyl 4-hydroxylase (P4H) is a α2β2 tetramer catalyzing the post-translational hydroxylation of prolines in collagen. Its recombinant production is mainly pursued to realize biotechnological tools able to generate animal contaminant-free hydroxylated collagen. One promising candidate for biomedical applications is the collagen extracted from the marine sponge Chondrosia reniformis, because of its biocompatibility and because is devoid of the health risks associated with bovine and porcine collagens.Here we report on the production and selection, by enzymatic and biomolecular analyses, of a triple transformed Pichia pastoris strain expressing a stable P4H tetramer derived from C. reniformis sponge and a hydroxylated non fibrillar procollagen polypeptide from the same animal. The percentage of recombinant procollagen hydroxylated prolines inside the transformed yeast was of 36.3% analyzed by mass spectrometry indicating that the recombinant enzyme is active on its natural substrate inside the yeast cell host. Furthermore, the recombinant sponge P4H has the ability to hydroxylate its natural substrate in both X and Y positions in the Xaa-Yaa-Gly collagenous triplets.In conclusion this Pichia system seems ideal for high-level production of hydroxylated sponge- or marine-derived collagen polypeptides as well as of conotoxins or other marine proteins of high pharmacological interest needing this particular post-translational modification. © 2015 Elsevier B.V.


Prolyl 4-hydroxylase (P4H) is a 22 tetramer catalyzing the post-translational hydroxylation of prolines in collagen. Its recombinant production is mainly pursued to realize biotechnological tools able to generate animal contaminant-free hydroxylated collagen. One promising candidate for biomedical applications is the collagen extracted from the marine sponge Chondrosia reniformis, because of its biocompatibility and because is devoid of the health risks associated with bovine and porcine collagens. Here we report on the production and selection, by enzymatic and biomolecular analyses, of a triple transformed Pichia pastoris strain expressing a stable P4H tetramer derived from C. reniformis sponge and a hydroxylated non fibrillar procollagen polypeptide from the same animal. The percentage of recombinant procollagen hydroxylated prolines inside the transformed yeast was of 36.3% analyzed by mass spectrometry indicating that the recombinant enzyme is active on its natural substrate inside the yeast cell host. Furthermore, the recombinant sponge P4H has the ability to hydroxylate its natural substrate in both X and Y positions in the Xaa-Yaa-Gly collagenous triplets. In conclusion this Pichia system seems ideal for high-level production of hydroxylated sponge- or marine-derived collagen polypeptides as well as of conotoxins or other marine proteins of high pharmacological interest needing this particular post-translational modification.


Vignini A.,Section of Biochemistry | Giulietti A.,Section of Biochemistry | Nanetti L.,Section of Biochemistry | Raffaelli F.,Section of Biochemistry | And 3 more authors.
Current Diabetes Reviews | Year: 2013

Several research groups have begun to associate the Alzheimer Disease (AD) to Diabetes Mellitus (DM), obesity and cardiovascular disease. This relationship is so close that some authors have defined Alzheimer Disease as Type 3 Diabetes. Numerous studies have shown that people with type 2 diabetes have twice the incidence of sporadic AD. Insulin deficiency or insulin resistance facilitates cerebral β-amyloidogenesis in murine model of AD, accompanied by a significant elevation in APP (Amyloid Precursor Protein) and BACE1 (β-site APP Cleaving Enzime 1). Similarly, deposits of Aβ produce a loss of neuronal surface insulin receptors and directly interfere with the insulin signaling pathway. Furthermore, as it is well known, these disorders are both associated to an increased cardiovascular risk and an altered cholesterol metabolism, so we have analyzed several therapies which recently have been suggested as a remedy to treat together AD and DM. The aim of the present review is to better understand the strengths and drawbacks of these therapies. © 2013 Bentham Science Publishers.


PubMed | Section of Biochemistry
Type: Journal Article | Journal: The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians | Year: 2015

The aim of the present study was to understand the role played by Atosiban, an oxytocin receptor antagonist, on trophoblastic human cells, and the molecular bases of its efficacy and safety in the treatment of preterm labor. NO, peroxinitrite production and NOS expression have been evaluated on placenta obtained from term and preterm labors.We studied trophoblast cells isolated from selected placental tissue from 20 controls and 20 preterm patients after cesarean sections. Each sample was studied at basal state and after 2 hours incubation with oxytocin and Atosiban.Significant variations of NO levels, peroxynitrite production and iNOS and eNOS expression both in the preterm, term samples and in each of the considered groups were observed. In the control group Atosiban re-established NO levels that were reduced after incubation with oxytocin, while in preterm samples NO levels were not only re-established but, after incubation with Atosiban, significantly increased compared to basal levels.This confirms the beneficial role of Atosiban in prolonging the pregnancy of spontaneous labor at very early gestational periods. In conclusion, Atosiban might be an effective drug to prevent preterm labor, in the therapeutic approach to this pathology.

Loading Section of Biochemistry collaborators
Loading Section of Biochemistry collaborators