Entity

Time filter

Source Type

San Fedele Superiore, Italy

Berry A.,Section of Behavioral Neurosciences | Bindocci E.,Section of Behavioral Neurosciences | Alleva E.,Section of Behavioral Neurosciences
Neural Plasticity | Year: 2012

Nerve Growth Factor (NGF) was initially studied for its role as a key player in the regulation of peripheral innervations. However, the successive finding of its release in the bloodstream of male mice following aggressive encounters and its presence in the central nervous system led to the hypothesis that variations in brain NGF levels, caused by psychosocial stressor, and the related alterations in emotionality, could be functional to the development of proper strategies to cope with the stressor itself and thus to survive. Years later this vision is still relevant, and the body of evidence on the role of NGF has been strengthened and expanded from trophic factor playing a role in brain growth and differentiation to a much more complex messenger, involved in psychoneuroendocrine plasticity. Copyright © 2012 Alessandra Berry et al. Source


Carnevale D.,I.R.C.C.S Neuromed | Mascio G.,I.R.C.C.S Neuromed | Ajmone-Cat M.A.,Section of Experimental Neurology | D'Andrea I.,Section of Behavioral Neurosciences | And 11 more authors.
Neurobiology of Aging | Year: 2012

Hypertension and sporadic Alzheimer's disease (AD) have been associated but clear pathophysiological links have not yet been demonstrated. Hypertension and AD share inflammation as a pathophysiological trait. Thus, we explored if modulating neuroinflammation could influence hypertension-induced β-amyloid (Aβ) deposition. Possible interactions among hypertension, inflammation and Aβ-deposition were studied in hypertensive mice with transverse aortic coarctation (TAC). Given that brain Aβ deposits are detectable as early as 4 weeks after TAC, brain pathology was analyzed in 3-week TAC mice, before Aβ deposition, and at a later time (8-week TAC mice).Microglial activation and interleukin (IL)-1β upregulation were already found in 3-week TAC mice. At a later time, along with evident Aβ deposition, microglia was still activated. Finally, immune system stimulation (LPS) or inhibition (ibuprofen), strategies described to positively or negatively modulate neuroinflammation, differently affected Aβ deposition. We demonstrate that hypertension per se triggers neuroinflammation before Aβ deposition. The finding that only immune system activation, but not its inhibition, strongly reduced amyloid burden suggests that stimulating inflammation in the appropriate time window may represent a promising strategy to limit vascular-triggered AD-pathology. © 2012 Elsevier Inc. Source


Bellisario V.,Section of Behavioral Neurosciences | Panetta P.,Section of Behavioral Neurosciences | Balsevich G.,Max Planck Institute of Psychiatry | Baumann V.,Max Planck Institute of Psychiatry | And 8 more authors.
Psychoneuroendocrinology | Year: 2015

Maternal diet during pregnancy can impact maternal behavior as well as the intrauterine environment, playing a critical role in programming offspring's physiology. In a preliminary study, we found a strong association between high-fat diet (HFD) during pregnancy and increased cannibalistic episodes and dams' mortality during late pregnancy and parturition. Based upon these data, we hypothesized that HFD during pregnancy could negatively affect neuroendocrine and metabolic regulations occurring during the final stages of pregnancy, thereby disrupting maternal behavior. To test this hypothesis, female C57BL/6J mice were fed HFD or control diet for 11 weeks until three days before the expected delivery date. Basal corticosterone plasma levels and brain levels of c-Fos were measured both before and after delivery, in addition to leptin levels in the adipose tissue. Dam's emotional behavior and social anxiety, in addition to locomotor activity were assessed before parturition. Data show that HFD led to aberrant maternal behavior, dams being characterized by behaviors related to aggression toward an unfamiliar social stimulus in the social avoidance test, in addition to decreased locomotor activity. Neural activity in HFD dams was reduced in the olfactory bulbs, a crucial brain region for social and olfactory recognition hence essential for maternal behavior. Furthermore, HFD feeding resulted in increased circulating levels of maternal corticosterone and decreased levels of leptin. In addition, the activity of the protective 11β-dehydrogenase-2 (11β-HSD-2) barrier in the placenta was decreased together with 11β-dehydrogenase-1 (11β-HSD-1) gene expression. Overall, these data suggest that HFD acts as a stressful challenge during pregnancy, impairing the neuroendocrine system and the neural activity of brain regions involved in the processing of relevant olfactory stimuli, with negative consequences on maternal physiology and behavior. © 2015 Elsevier Ltd. Source


Bellisario V.,Section of Behavioral Neurosciences | Berry A.,Section of Behavioral Neurosciences | Capoccia S.,Section of Behavioral Neurosciences | Raggi C.,Section of Behavioral Neurosciences | And 6 more authors.
Frontiers in Behavioral Neuroscience | Year: 2014

Metabolic stressful challenges during susceptible time windows, such as fetal life, can have important implications for health throughout life. Deletion of the p66Shc gene in mice leads to reduced oxidative stress (OS), resulting in a healthy and lean phenotype characterized by increased metabolic rate, resistance to high-fat diet (HFD)-induced obesity and reduced emotionality at adulthood. Here we hypothesize that p66Shc-/- (KO) adult offspring might be protected from the detrimental effects induced by maternal HFD administered before and during pregnancy. To test such hypothesis, we fed p66Shc+/+ (WT) and KO females with HFD for 13 weeks starting on 5 weeks of age until delivery and tested adult male and female offspring for their metabolic, neuroendocrine, and emotional profile. Prenatal diet affected stress responses and metabolic features in a gender-dependent fashion. In particular, prenatal HFD increased plasma leptin levels and decreased anxiety-like behavior in females, while increasing body weight, particularly in KO subjects. KO mice were overall characterized by metabolic resiliency, showing a blunted change in glycemia levels in response to glucose or insulin challenges. However, in p66Shc-/- mice, prenatal HFD affected glucose tolerance response in an opposite manner in the two genders, overriding the resilience in males and exacerbating it in females. Finally, KO females were protected from the disrupting effect of prenatal HFD on neuroendocrine response. These findings indicate that prenatal HFD alters the emotional profile and metabolic functionality of the adult individual in a gender-dependent fashion and suggest that exposure to high-caloric food during fetal life is a stressful condition interfering with the developmental programming of the adult phenotype. Deletion of the p66Shc gene attenuates such effects, acting as a protective factor. © 2014 Bellisario, Berry, Capoccia, Raggi, Panetta, Branchi, Piccaro, Giorgio, Pelicci and Cirulli. Source

Discover hidden collaborations