Section of Anaesthetics

London, United Kingdom

Section of Anaesthetics

London, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Zhao H.,Section of Anaesthetics | Luo X.,Section of Anaesthetics | Luo X.,Hubei University of Medicine | Zhou Z.,Section of Anaesthetics | And 5 more authors.
Kidney International | Year: 2014

Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1 individually. In the Fischer-To-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts © 2013 International Society of Nephrology.


Luo X.,Hubei University of Medicine | Zhao H.,Section of Anaesthetics | Hennah L.,Section of Anaesthetics | Ning J.,Section of Anaesthetics | And 3 more authors.
British Journal of Anaesthesia | Year: 2015

Background: Metastatic recurrence of ovarian cancer is the foremost cause of postoperative mortality. With recent research indicating that inhalation of anaesthetics may influence cancer cell behaviour, this study investigated the effects of isoflurane on the expression of tumorigenic markers and proliferative capacity in ovarian cancer cells. Methods: Ovarian cancer (SK-OV3) cells were cultured and then exposed to 2% isoflurane for 2 h. The expression of markers involved in cell proliferation, angiogenesis, and migration were assessed up to 24 h after treatment using immunofluorescence staining, western blotting, and flow cytometry. The effects of isoflurane on in vitro angiogenesis and migration were also determined. Results: Isoflurane exposure significantly increased insulin-like growth factor (IGF)-1 and IGF-1R expression, cell cycle progression, and cell proliferation in SK-OV3 cells. Increased expression of the angiogenic markers vascular endothelial growth factor (VEGF) by 56% (P<0.05) and angiopoietin-1 by 62% (P<0.05) was also observed 24 h after isoflurane exposure together with an enhanced in vitro angiogenesis. Cell migration was significantly increased after exposure to isoflurane together with increased production of both matrix metalloproteinases 2 and 9 (both P<0.05) by almost five-fold relative to control. These effects were abolished when IGF-1R signalling was blocked either by neutralizing antibody or by small interfering RNA. Conclusions: Our data indicate that isoflurane increases the malignant potential of ovarian cancer cells through the up-regulation of markers associated with the cell cycle, proliferation, and angiogenesis. This study warrants further investigations. © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved.


Cui J.,Chongqing Medical University | Zhao H.,Section of Anaesthetics | Wang C.,Section of Anaesthetics | Sun J.J.,Section of Anaesthetics | And 2 more authors.
Oxidative Medicine and Cellular Longevity | Year: 2015

Background: Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α 2 adrenoceptor agonist dexmedetomidine (Dex) from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2) and the underlying mechanisms. Methods: The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM) or Dex in combination with atipamezole (10 nM), an antagonist of α 2 receptors. Their effect on mitochondrial membrane potential (Δ ψm), reactive oxygen species (ROS), and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR), ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results: Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion: Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation. © 2015 Jian Cui et al.

Loading Section of Anaesthetics collaborators
Loading Section of Anaesthetics collaborators