Entity

Time filter

Source Type


Brito D.,Federal University of Goais | Moreira D.O.,Federal University of Espirito Santo | Coutinho B.R.,Secretaria de Extrativismo e Desenvolvimento Rural Sustentavel | Oprea M.,Federal University of Goais
Journal for Nature Conservation | Year: 2012

Diseases are part of the natural world, but human activities may affect and disrupt the natural dynamics of diseases, threatening wildlife species and human welfare. We listed the number of species threatened by diseases and compiled their distributional ranges. Based on such data we identify global disease hotspots, regions where disrupted disease dynamics threaten to decimate several species into extinction. The number of species threatened by disease may increase, and climate change may act synergistically increasing the severity of disease incidence in the hotspots, and drive the emergence of new disease hotspots. Until now diseases were thought to play a secondary role in the biodiversity extinction crisis, but the global threat scenario is so dynamic that if we do not bring diseases to the forefront of conservation actions and policies, they may not only bring species into extinction but they may also affect human populations as well. © 2011 Elsevier GmbH. Source


De Oliveira Moreira D.,Federal University of Espirito Santo | De Oliveira Moreira D.,Duke University | Leite G.R.,Federal University of Espirito Santo | De Siqueira M.F.,Institute Pesquisas Do Jardim Botanico Do Rio Of Janeiro | And 3 more authors.
PLoS ONE | Year: 2014

The maned sloth Bradypus torquatus (Pilosa, Bradypodidae) is endemic to a small area in the Atlantic Forest of coastal Brazil. It has been listed as a threatened species because of its restricted geographic range, habitat loss and fragmentation, and declining populations. The major objectives of this study were to estimate its potential geographic distribution, the climatic conditions across its distributional range, and to identify suitable areas and potential species strongholds. We developed a model of habitat suitability for the maned sloth using two methods, Maxent and Mahalanobis Distance, based on 42 occurrence points. We evaluated environmental variable importance and the predictive ability of the generated distribution models. Our results suggest that the species distribution could be strongly influenced by environmental factors, mainly temperature seasonality. The modeled distribution of the maned sloth included known areas of occurrence in the Atlantic Forest (Sergipe, Bahia, Espýrito Santo, and Rio de Janeiro), but did not match the observed distributional gaps in northern Rio de Janeiro, northern Espýrito Santo or southern Bahia. Rather, the model showed that these areas are climatically suitable for the maned sloth, and thus suggests that factors other than climate might be responsible for the absence of species. Suitable areas for maned sloth were located mainly in the mountainous region of central Rio de Janeiro throughout Espýrito Santo and to the coastal region of southern Bahia. We indicate 17 stronghold areas and recommended survey areas for the maned sloth. In addition, we highlight specific areas for conservation, including the current network protected areas. Our results can be applied for novel surveys and discovery of unknown populations, and help the selection of priority areas for management and conservation planning, especially of rare and relatively cryptic species directed associated with forested habitats. © 2014 Moreira et al. Source


Moreira Dd.e O.,Federal University of Espirito Santo | Leite G.R.,Federal University of Espirito Santo | Ferreira de Siqueira M.,Institute Pesquisas Do Jardim Botanico Do Rio Of Janeiro | Coutinho B.R.,Secretaria de Extrativismo e Desenvolvimento Rural Sustentavel | And 2 more authors.
PloS one | Year: 2014

The maned sloth Bradypus torquatus (Pilosa, Bradypodidae) is endemic to a small area in the Atlantic Forest of coastal Brazil. It has been listed as a threatened species because of its restricted geographic range, habitat loss and fragmentation, and declining populations. The major objectives of this study were to estimate its potential geographic distribution, the climatic conditions across its distributional range, and to identify suitable areas and potential species strongholds. We developed a model of habitat suitability for the maned sloth using two methods, Maxent and Mahalanobis Distance, based on 42 occurrence points. We evaluated environmental variable importance and the predictive ability of the generated distribution models. Our results suggest that the species distribution could be strongly influenced by environmental factors, mainly temperature seasonality. The modeled distribution of the maned sloth included known areas of occurrence in the Atlantic Forest (Sergipe, Bahia, Espírito Santo, and Rio de Janeiro), but did not match the observed distributional gaps in northern Rio de Janeiro, northern Espírito Santo or southern Bahia. Rather, the model showed that these areas are climatically suitable for the maned sloth, and thus suggests that factors other than climate might be responsible for the absence of species. Suitable areas for maned sloth were located mainly in the mountainous region of central Rio de Janeiro throughout Espírito Santo and to the coastal region of southern Bahia. We indicate 17 stronghold areas and recommended survey areas for the maned sloth. In addition, we highlight specific areas for conservation, including the current network protected areas. Our results can be applied for novel surveys and discovery of unknown populations, and help the selection of priority areas for management and conservation planning, especially of rare and relatively cryptic species directed associated with forested habitats. Source


Vieira R.M.S.P.,National Institute for Space Research | Tomasella J.,National Institute for Space Research | Sestini M.F.,National Institute for Space Research | Affonso A.G.,National Institute for Space Research | And 9 more authors.
Solid Earth | Year: 2015

Approximately 57% of the Brazilian northeast region is recognized as semi-arid land and has been undergoing intense land use processes in the last decades, which have resulted in severe degradation of its natural assets. Therefore, the objective of this study is to identify the areas that are susceptible to desertification in this region based on the 11 influencing factors of desertification (pedology, geology, geomorphology, topography data, land use and land cover change, aridity index, livestock density, rural population density, fire hot spot density, human development index, conservation units) which were simulated for two different periods: 2000 and 2010. Each indicator were assigned weights ranging from 1 to 2 (representing the best and the worst conditions), representing classes indicating low, moderate and high susceptibility to desertification. The results indicate that 94% of the Brazilian northeast region is under moderate to high susceptibility to desertification. The areas that were susceptible to soil desertification increased by approximately 4.6% (83.4 km2) from 2000 to 2010. The implementation of the methodology provides the technical basis for decision-making that involves mitigating actions and the first comprehensive national assessment within the United Nations Convention to Combat Desertification framework. © Author(s) 2015. Source

Discover hidden collaborations