Entity

Time filter

Source Type


Wen J.,Second Affiliated Hospital of Southeast University | Jiang S.,Second Affiliated Hospital of Southeast University | Chen Z.,Second Affiliated Hospital of Southeast University | Zhao W.,Second Affiliated Hospital of Southeast University | And 3 more authors.
International Journal of Nanomedicine | Year: 2014

Objective: To explore the effect of folic acid-modified magnetic nanoparticles (FA-MNPs) combined with a 100 Hz extremely low-frequency electromagnetic field (ELF-EMF) on the apoptosis of liver cancer BEL-7402 cells. Materials and methods: MNPs (20 nm) were prepared by coprecipitation, and then folic acid was coated onto MNPs to prepare FA-MNPs. BEL-7402 cells and HL7702 cells were selected as liver cancer cells and normal liver cells, respectively. The ELF-EMF was generated from a solenoid coil. Cellular uptake of NPs was determined by inductively coupled plasma atomic emission spectroscopy. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cell inhibition. Apoptosis was analyzed by flow cytometry. Statistical analyses were performed using two-way analysis of variance. Results: FA-MNPs combined with a 100 Hz magnetic field significantly inhibited cell proliferation and induced higher apoptosis compared to either the ELF-EMF alone or FA-MNPs alone. FA-MNPs showed a better apoptosis effect and higher iron uptake in BEL-7402 cells compared to in HL7702 cells. On the basis of the ELF-EMF, higher doses of FA-MNPs brought higher apoptosis and higher iron uptake in either BEL-7402 cells or HL7702 cells. Conclusion: These results suggest that FA-MNPs may induce apoptosis in a cellular iron uptake-dependent manner when combined with an ELF-EMF in BEL-7402 cells. © 2014 Wen et al. Source

Discover hidden collaborations