Bothell, WA, United States
Bothell, WA, United States

Time filter

Source Type

The invention provides methods and compositions for the inhibition of fucosylation of proteins, including antibodies, in vivo by administration of a fucose analog.


This disclosure provides optimized formulations for CD19 antibodies and antibody-drug conjugates (ADCs)


Auristatin peptides, including MeVal-Val-Dil-Dap-Norephedrine (MMAE) and MeVal-Val-Dil-Dap-Phe (MMAF), were prepared and attached to Ligands through various linkers, including maleimidocaproyl-val-cit-PAB. The resulting ligand drug conjugates were active in vitro and in vivo.


Patent
Seattle Genetics | Date: 2017-04-19

The invention provides humanized antibodies that specifically bind to LIV-1. The antibodies are useful for treatment and diagnoses of various cancers as well as detecting LIV-1.


Sievers E.L.,Seattle Genetics | Senter P.D.,Seattle Genetics
Annual Review of Medicine | Year: 2013

An antibody-drug conjugate (ADC) provides the possibility of selectively ablating cancer cells by combining the specificity of a monoclonal antibody (mAb) for a target antigen with the delivery of a highly potent cytotoxic agent. ADC target antigens are typically highly expressed on the surface of cancer cells compared to normal cells. The tumor target, the cytotoxic agent, and the manner in which the agent is attached to the antibody are key determinants of clinical activity and tolerability. Recently, several clinical trials have demonstrated that ADCs achieve higher clinical response rates than unconjugated mAbs targeting the same cell surface antigen. Brentuximab vedotin represents one such ADC that has recently been approved for the treatment of relapsed Hodgkin and systemic anaplastic large cell lymphomas-both characterized by high expression of the target antigen, CD30, on the surface of malignant cells. This review summarizes key characteristics of current, clinically active ADCs and highlights recent clinical data illustrating the benefit of antibody-targeted delivery of cytotoxic agents to cancer cells. Copyright © 2013 by Annual Reviews.


Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.


Senter P.D.,Seattle Genetics | Sievers E.L.,Seattle Genetics
Nature Biotechnology | Year: 2012

Progress has been made recently in developing antibody-drug conjugates (ADCs) that can selectively deliver cancer drugs to tumor cells. In principle, the idea is simple: by attaching drugs to tumor-seeking antibodies, target cells will be killed and nontarget cells will be spared. In practice, many parameters needed to be addressed to develop safe and effective ADCs, including the expression profiles of tumor versus normal tissues, the potency of the drug, the linker attaching the drug and placement of the drug on the antibody, and the pharmacokinetic and stability profiles of the resulting ADC. All these issues had been taken into account in developing brentuximab vedotin (Adcetris), an ADC that recently received accelerated approval by the US Food and Drug Administration for the treatment of relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma (ALCL). Research is under way to extend the applications of brentuximab vedotin and to advance the field by developing other ADCs with new linker and conjugation strategies. © 2012 Nature America, Inc. All rights reserved.


Patent
Seattle Genetics | Date: 2016-09-07

The invention provides antibodies that specifically bind to integrin 6. The antibodies are useful for treatment and diagnoses of various cancers as well as detecting 6.


Patent
Seattle Genetics | Date: 2016-07-22

Disclosed are CD70 binding agents, such as humanized anti-CD70 antibodies and fragments and derivatives, that exert a cytotoxic, cytostatic or immunomodulatory on CD70 expressing cells, as well as pharmaceutical compositions and kits comprising the antibody, fragment or derivative. Also disclosed are methods for the treatment of CD70-expressing cancers and immunological disorders, comprising administering to a subject the CD70 binding agents or pharmaceutical compositions.


Patent
Seattle Genetics and MEDIMMUNE Ltd | Date: 2016-06-15

This invention relates to pyrrolobenzodiazepines (PBDs), in particular pyrrolobenzodiazepine dimers having a C2-C3 double bond and an aryl group at the C2 position in each monomer unit, and their inclusion in targeted conjugates. The differing substituent groups may offer advantages in the preparation and use of the compounds, particularly in their biological properties and the synthesis of conjugates, and the biological properties of these conjugates.

Loading Seattle Genetics collaborators
Loading Seattle Genetics collaborators