Entity

Time filter

Source Type

Bothell, WA, United States

Schadt E.E.,Mount Sinai School of Medicine | Woo S.,University of Washington | Woo S.,Fred Hutchinson Cancer Research Center | Hao K.,Mount Sinai School of Medicine | Hao K.,Seattle Genetics
Nature Genetics | Year: 2012

RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P adjusted ĝ‰Currency sign 1 × 10 -5. When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P adjusted ≤ 1 × 10 -5. We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. © 2012 Nature America, Inc. All rights reserved. Source


Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML. Source


Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored to identify true associations that fail to meet the stringent level of association required to achieve genome-wide significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver, subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS. Source


Patent
Seattle Genetics | Date: 2015-02-05

The present application relates to new derivatives of monomethylauristatin F, substituted on the N terminus by a carboxyalkyl group, processes for preparing these derivatives, their use for the treatment and/or prevention of diseases and to produce medication for the treatment and/or prevention of diseases, particularly hyperproliferative and/or angiogenic disorders such as cancer disorders, for example. Such treatments can occur as monotherapies or in combination with other medication or further therapeutic measures.


Alley S.C.,Seattle Genetics | Anderson K.E.,Seattle Genetics
Current Opinion in Chemical Biology | Year: 2013

Antibody-drug conjugates (ADCs) require multiple assays for analytical and bioanalytical characterization due to their heterogeneous and dynamic nature. These assays can help address questions from the drug-loading distribution following conjugation to exposure-response relationships after dosing in vivo. This review describes new assay technologies that have been developed for physiochemical characterization and determination of pharmacokinetic parameters of ADCs. © 2013 Elsevier Ltd. Source

Discover hidden collaborations