Time filter

Source Type

Dundee, United Kingdom

The Scottish Crop Research Institute more commonly known as the SCRI was a scientific institute located in Invergowrie near Dundee, Scotland. As of April 2011, when SCRI merged with the Macaulay Land Use Institute it is now part of The James Hutton Institute. Wikipedia.

Raven J.A.,Scottish Crop Research Institute | Raven J.A.,University of Western Australia
Physiologia Plantarum

Photoinhibition is an inevitable consequence of oxygenic photosynthesis. However, the concept of a 'photoinhibition-proof' plant in which photosystem II (PSII) is immune to photodamage is useful as a benchmark for considering the performances of plants with varying mixes of mechanisms which limit the extent of photodamage and which repair photodamage. Some photodamage is bound to occur, and the energy costs of repair are the direct costs of repair plus the photosynthesis foregone during repair. One mechanism permitting partial avoidance of photodamage is restriction of the number of photons incident on the photosynthetic apparatus per unit time, achieved by phototactic movement of motile algae to places with lower incident photosynthetically active radiation (PAR), by phototactic movement of plastids within cells to positions that minimize the incident PAR and by photonastic relative movements of parts of photolithotrophs attached to a substrate. The other means of avoiding photodamage is dissipating excitation of photosynthetic pigments including state transitions, non-photochemical quenching by one of the xanthophyll cycles or some other process and photochemical quenching by increased electron flow through PSII involving CO2 and other acceptors, including the engagement of additional electron transport pathways. These mechanisms inevitably have the potential to decrease the rate of growth. As well as the decreased photosynthetic rates as a result of photodamage and the restrictions on photosynthesis imposed by the repair, avoidance, quenching and scavenging mechanisms, there are also additional energy, nitrogen and phosphorus costs of producing and operating repair, avoidance, quenching and scavenging mechanisms. A comparison is also made between the costs of photoinhibition and those of other plant functions impeded by the occurrence of oxygenic photosynthesis, i.e. the competitive inhibition of the carboxylase activity of ribulose bisphosphate carboxylase-oxygenase by oxygen via the oxygenase activity, and oxygen damage to nitrogenase in diazotrophic organisms. © Physiologia Plantarum 2011. Source

Lux A.,Comenius University | Martinka M.,Comenius University | Vaculik M.,Comenius University | White P.J.,Scottish Crop Research Institute
Journal of Experimental Botany

This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 μg g-1 dry matter are toxic to most plants, and plants have evolved mechanisms to limit Cd translocation to the shoot. Cadmium movement through the root symplasm is thought to be restricted by the production of phytochelatins and the sequestration of Cd-chelates in vacuoles. Apoplasmic movement of Cd to the xylem can be restricted by the development of the exodermis, endodermis, and other extracellular barriers. Increasing rhizosphere Cd concentrations increase Cd accumulation in the plant, especially in the root. The presence of Cd in the rhizosphere inhibits root elongation and influences root anatomy. Cadmium concentrations are greater in the root apoplasm than in the root symplasm, and tissue Cd concentrations decrease from peripheral to inner root tissues. This article reviews current knowledge of the proteins involved in the transport of Cd across root cell membranes and its detoxification through sequestration in root vacuoles. It describes the development of apoplastic barriers to Cd movement to the xylem and highlights recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality. It concludes that accelerated maturation of the endodermis in response to local Cd availability is of functional significance in protecting the shoot from excessive Cd loads. © 2010 The Author. Source

Macfarlane S.A.,Scottish Crop Research Institute
Molecular Plant Pathology

The tobraviruses, Tobacco rattle virus (TRV), Pea early-browning virus (PEBV) and Pepper ringspot virus (PepRSV), are positive-strand RNA viruses with rod-shaped virus particles that are transmitted between plants by trichodorid nematodes. As a group, these viruses infect many plant species, with TRV having the widest host range. Recent studies have begun to dissect the interaction of TRV with potato, currently the most commercially important crop disease caused by any of the tobraviruses. As well as being successful plant pathogens, these viruses have become widely used as vectors for expression in plants of nonviral proteins or, more frequently, as initiators of virus-induced gene silencing (VIGS). Precisely why tobraviruses should be so effective as VIGS vectors is not known; however, molecular studies of the mode of action of the tobravirus silencing suppressor protein are shedding some light on this process. © 2010 The Author. Source

Davies H.,Scottish Crop Research Institute
Food Control

Risk assessment frameworks, such as those used for GM crops, have detailed comparative analysis with appropriate non-GM counterparts as their cornerstone. Opinions have been voiced that current analytical approaches are too specific and need to be complemented by more unbiased, larger scale analysis of gene expression and protein expression using transcriptomics and proteomics, respectively. In parallel, the use of metabolomics has been advocated as an approach to expand significantly the range of metabolites that can be measured to assess more stringently the potential for any unintended effects. Transcriptomics, proteomics and metabolomics have been termed collectively "omics" technologies. This review assesses the potential for using "omics" techniques in risk assessment. Importantly, the review provides information on sources of natural variation which can result from crop management practices, from interactions between genotype and growing environment and from non-GM breeding systems. This provides an important benchmark for risk assessors and risk managers. © 2009 Elsevier Ltd. Source

Dupuy L.,University of Cambridge | Dupuy L.,Scottish Crop Research Institute | Mackenzie J.,University of Cambridge | Haseloff J.,University of Cambridge
Proceedings of the National Academy of Sciences of the United States of America

Morphogenesis in plants arises from the interplay of genetic and physical interactions within a growing network of cells. The physical aspects of cell proliferation and differentiation are genetically regulated, but constrained by mechanical interactions between the cells. Higher plant tissues consist of an elaborate three-dimensional matrix of active cytoplasm and extracellular matrix, where it is difficult to obtain direct measurements of geometry or cell interactions. To properly understand the workings of plant morphogenesis, it is necessary to have biological systems that allow simple and direct observation of these processes. We have adopted a highly simplified plant system to investigate how cell proliferation and expansion is coordinated during morphogenesis. Coleocheate scutata is a microscopic fresh-water green alga with simple anatomical features that allow for accurate quantification of morphogenetic processes. Image analysis techniques were used to extract precise models for cell geometry and physical parameters for growth. This allowed construction of a deformable finite element model for growth of the whole organism, which incorporated cell biophysical properties, viscous expansion of cell walls, and rules for regulation of cell behavior. The study showed that a simple set of autonomous, cell-based rules are sufficient to account for the morphological and dynamic properties of Coleochaete growth. A variety of morphogenetic behavior emerged from the application of these local rules. Cell shape sensing is sufficient to explain the patterns of cell division during growth. This simplifying principle is likely to have application in modeling and design for engineering of higher plant tissues. Source

Discover hidden collaborations