Time filter

Source Type

Cedar Ridge, CA, United States

Zhu S.,Xiamen University | Ma L.,Xiamen University | Wang S.,Xiamen University | Chen C.,Xiamen University | And 6 more authors.
ACS Nano | Year: 2014

Ultrasensitive detection and characterization of single nanoparticles (<100 nm) is important in nanotechnology and life sciences. Direct measurement of the elastically scattered light from individual nanoparticles represents the simplest and the most direct method for particle detection. However, the sixth-power dependence of scattering intensity on particle size renders very small particles indistinguishable from the background. Adopting strategies for single-molecule fluorescence detection in a sheathed flow, here we report the development of high sensitivity flow cytometry (HSFCM) that achieves real-time light-scattering detection of single silica and gold nanoparticles as small as 24 and 7 nm in diameter, respectively. This unprecedented sensitivity enables high-resolution sizing of single nanoparticles directly based on their scattered intensity. With a resolution comparable to that of TEM and the ease and speed of flow cytometric analysis, HSFCM is particularly suitable for nanoparticle size distribution analysis of polydisperse/heterogeneous/mixed samples. Through concurrent fluorescence detection, simultaneous insights into the size and payload variations of engineered nanoparticles are demonstrated with two forms of clinical nanomedicine. By offering quantitative multiparameter analysis of single nanoparticles in liquid suspensions at a throughput of up to 10 000 particles per minute, HSFCM represents a major advance both in light-scattering detection technology and in nanoparticle characterization. © 2014 American Chemical Society.

Tewson P.H.,Montana Molecular, Llc | Martinka S.,Montana Molecular, Llc | Shaner N.C.,Scintillon Institute | Hughes T.E.,Montana Molecular, Llc | Quinn A.M.,Montana Molecular, Llc
Journal of Biomolecular Screening | Year: 2016

Protein-based, fluorescent biosensors power basic research on cell signaling in health and disease, but their use in automated laboratories is limited. We have now created two live-cell assays, one for diacyl glycerol and another for cAMP, that are robust (Z′ > 0.7) and easily deployed on standard fluorescence plate readers. We describe the development of these assays, focusing on the parameters that were critical for optimization, in the hopes that the lessons learned can be generalized to the development of new biosensor-based assays. © Society for Laboratory Automation and Screening.

Shaner N.C.,Scintillon Institute
Methods in Cell Biology | Year: 2014

More than 20 years after their discovery, fluorescent proteins (FPs) continue to be the subject of massive engineering efforts yielding continued improvements. Among these efforts are many aspects that should be of great interest to quantitative imaging users. With new variants frequently introduced into the research community, "tried and true" FPs that have been relied on for many years may now be due for upgrades to more modern variants. However, the dizzying array of FPs now available can make the initial act of narrowing down the potential choices an intimidating prospect. This chapter describes the FP properties that most strongly impact their performance in quantitative imaging experiments, along with their physical origins as they are currently understood. A workflow for evaluating a given FP in the researcher's chosen experimental system (e.g., a specific cell line) is described. © 2014 Elsevier Inc.

Wang G.,Boston Childrens Hospital | McCain M.L.,Wyss Institute for Biologically Inspired Engineering | Yang L.,Harvard University | He A.,Boston Childrens Hospital | And 28 more authors.
Nature Medicine | Year: 2014

Study of monogenic mitochondrial cardiomyopathies may yield insights into mitochondrial roles in cardiac development and disease. Here, we combined patient-derived and genetically engineered induced pluripotent stem cells (iPSCs) with tissue engineering to elucidate the pathophysiology underlying the cardiomyopathy of Barth syndrome (BTHS), a mitochondrial disorder caused by mutation of the gene encoding tafazzin (TAZ). Using BTHS iPSC-derived cardiomyocytes (iPSC-CMs), we defined metabolic, structural and functional abnormalities associated with TAZ mutation. BTHS iPSC-CMs assembled sparse and irregular sarcomeres, and engineered BTHS 'heart-on-chip' tissues contracted weakly. Gene replacement and genome editing demonstrated that TAZ mutation is necessary and sufficient for these phenotypes. Sarcomere assembly and myocardial contraction abnormalities occurred in the context of normal whole-cell ATP levels. Excess levels of reactive oxygen species mechanistically linked TAZ mutation to impaired cardiomyocyte function. Our study provides new insights into the pathogenesis of Barth syndrome, suggests new treatment strategies and advances iPSC-based in vitro modeling of cardiomyopathy. © 2014 Nature America, Inc. All rights reserved.

Nolan J.P.,Scintillon Institute
Current Protocols in Cytometry | Year: 2015

Evidence suggests that extracellular vesicles (EVs) can play roles in physiology and pathology, providing impetus to explore their use as diagnostic and therapeutic targets. However, EVs are also small, heterogeneous, and difficult to measure, and so this potential has not yet been realized. The development of improved approaches to EV detection and characterization will be critical to further understanding their roles in physiology and disease. Flow cytometry has been a popular tool for measuring cell-derived EVs, but has often been used in an uncritical manner in which fundamental principles and limitations of the instrument are ignored. Recent efforts to standardize procedures and document the effects of different methodologies have helped to address this shortcoming, butmuchwork remains. In this paper, I address some of the instrument, reagent, and analysis considerations relevant to measurement of individual EVs in flow, with the aim of clarifying a path to quantitative and standardized measurement of these interesting and potentially important biological nanoparticles. © 2015 by John Wiley & Sons, Inc.

Discover hidden collaborations