Entity

Time filter

Source Type


Huygen K.,Scientific Institute of Public Health WIV ISP Site Ukkel
Frontiers in Immunology | Year: 2014

The Ag85 complex is a 30-32 kDa family of three proteins (Ag85A, Ag85B, and Ag85C), which all three possess enzymatic mycolyl-transferase activity involved in the coupling of mycolic acids to the arabinogalactan of the cell wall and in the biogenesis of cord factor. By virtue of their strong potential to induce Th1-type immune responses, important for the control of intracellular infections, members of the Ag85 family rank among the most promising TB vaccine candidate antigens. Ag85A and Ag85B, initially purified from Mycobacterium bovis bacillus Calmette-Guérin (BCG)/Mycobacterium tuberculosis culture filtrate respectively, induce strong T-cell proliferation and IFN-γ production in most healthy individuals latently infected with M. tuberculosis and in BCG-vaccinated mice and humans but not in tuberculosis patients. Members of the Ag85 complex are highly conserved in other mycobacterial species. Mice and humans infected with Mycobacterium ulcerans or cattle infected with M. bovis or Mycobacterium avium subsp. paratuberculosis also show strong T-cell responses to this protein family. Using synthetic overlapping peptides, bio-informatic prediction programs and tetramer-binding studies, a number of immunodominant CD4+ and CD8+ T-cell epitopes have been identified in experimental animal models as well as in humans, using proliferation and Th1 cytokine secretion as main read-outs. The results from these studies are summarized in this review. © 2014 Huygen. Source


Todoroff J.,Catholic University of Louvain | Ucakar B.,Catholic University of Louvain | Inglese M.,Catholic University of Louvain | Vandermarliere S.,Catholic University of Louvain | And 4 more authors.
European Journal of Pharmaceutics and Biopharmaceutics | Year: 2013

The current Bacille Calmette-Guérin vaccine provides variable protection against tuberculosis and new vaccination approaches are urgently needed. Pulmonary vaccination could be the best way to induce a protective immunity against Mycobacterium tuberculosis as it targets its natural site of infection. The aim of this study was to investigate the potential of Poloxamer 407 (P407) combined with a CpG oligonucleotide (CpG) to enhance immune responses to M. tuberculosis antigen 85A (Ag85A) following pulmonary delivery in BALB/c mice. An additional goal of this study was to localize the optimal delivery site of Ag85A within the lungs for generating the most intense immunity. We also investigated the capacity of P407 to prolong the residence time of the antigen within the lungs and we studied the safety of the adjuvants following pulmonary delivery. Targeting the antigen to the deep lungs produced more intense specific immune responses than targeting it to the upper airways. P407 and CpG further increased humoral immune responses and splenocyte proliferation in vitro. CpG strongly increased the Th-1 immune response with high IgG2a/IgG1 ratio, high IFN-γ and TNF-α productions by spleen mononuclear cells in vitro. P407 tended to induce a Th-2 response, as indicated by the slight decrease in IgG2a/IgG1 ratio and the slight increase in IL-5 levels. The combination of P407 and CpG produced the highest Th-1 and Th-17 responses by generating IFN-γ, TNF-α, IL-2, and IL-17A cytokines. Targeting the antigen to the deep lungs and the presence of P407 increased the residence time of the antigen within the lungs. This might explain the enhancement of immune responses induced by these factors. CpG did not induce inflammation in the lungs while P407 produced a reversible alteration of the alveolo-capillary barrier. Adding CpG to P407 did not further increase this alteration of the alveolo-capillary barrier. In conclusion, delivery of Ag85A formulated in a combination of P407 and CpG to the deep lungs induced strong immune responses, with a polyfunctional T cells phenotype. © 2012 Elsevier B.V. All rights reserved. Source


Romano M.,Scientific Institute of Public Health WIV ISP Site Ukkel | Huygen K.,Scientific Institute of Public Health WIV ISP Site Ukkel
Expert Opinion on Biological Therapy | Year: 2012

Introduction: Apart from better diagnostics and new anti-microbial drugs, an effective vaccine for tuberculosis is urgently needed to halt this poverty-related disease, afflicting millions of people worldwide. Areas covered: After a general introduction on the global threat of tuberculosis, the pros and cons of the existing M. bovis BCG vaccine are discussed. As the correlates of protection against tuberculosis remain largely unknown, new findings in biomarker research are described. Next, an update on the ongoing Phase I and Phase II clinical trials is given. Finally, some of the most promising novel pre-clinical developments using live attenuated vaccines, sub-unit vaccines, prime-boost strategies, and new vaccination routes are discussed. The field has made considerable progress and 12 vaccine candidates have now actually entered Phase I or Phase IIa and IIb clinical trials. Expert opinion: It is argued that the variable protection conferred by the existing BCG vaccine against reactivation of latent TB is caused not only by waning of its efficacy with time but also by its weak induction of MHC class I restricted responses. Prime-boost strategies based on the actual BCG vaccine may not be sufficient to overcome this hurdle. The use of plasmid DNA vaccination might offer a solution. © Informa UK, Ltd. Source


Fraga A.G.,University of Minho | Fraga A.G.,ICVS 3Bs PT Government Associate Laboratory | Martins T.G.,University of Minho | Martins T.G.,ICVS 3Bs PT Government Associate Laboratory | And 9 more authors.
PLoS ONE | Year: 2012

Background: Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. Methodology/Principal Findings: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. Conclusions/Significance: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised. © 2012 Fraga et al. Source


Freches D.,Scientific Institute of Public Health WIV ISP Site Ukkel | Korf H.,Scientific Institute of Public Health WIV ISP Site Ukkel | Korf H.,Catholic University of Leuven | Denis O.,Scientific Institute of Public Health WIV ISP Site Ukkel | And 3 more authors.
Immunology | Year: 2013

Summary: Interleukin-17A (IL-17A), a pro-inflammatory cytokine acting on neutrophil recruitment, is known to play an important role during Mycobacterium tuberculosis infection, but the role of IL-17A receptor signalling in immune defence against this intracellular pathogen remains poorly documented. Here we have analysed this signalling using C57BL/6 mice genetically inactivated in the IL-17 receptor A subunit (IL-17RA-/-). Although early after infection bacterial growth was controlled to the same extent as in wild-type mice, IL-17RA-/- mice were defective in exerting long-term control of M. tuberculosis infection, as demonstrated by a progressively increasing pulmonary bacterial burden and shortened survival time. Compared with infected wild-type mice, IL-17RA-/- mice showed impaired recruitment of neutrophils to the lungs at the early but not the late stage of infection. Pulmonary tumour necrosis factor-α, IL-6 and particularly IL-10 levels were decreased in the absence of IL-17RA signalling, whereas IL-1β was increased. CD4+-mediated and γδ-mediated IL-17A production was dramatically increased in IL-17RA-/- mice (confirming part of their phenotype), whereas production of interferon-γ and expression of the bactericidal enzyme inducible nitric oxide synthase were not affected. Collectively, our data suggest that early but not late neutrophil recruitment is essential for IL-17A-mediated long-term control of M. tuberculosis infection and that a functional interferon-γ response is not sufficient to control M. tuberculosis growth when the IL-17RA pathway is deficient. As treatment of auto-immune diseases with anti-IL-17A antibodies is actually being tested in clinical studies, our data suggest that caution should be taken with respect to possible reactivation of tuberculosis. © 2013 John Wiley & Sons Ltd. Source

Discover hidden collaborations