Time filter

Source Type

Conson M.,The Second University of Naples | Mazzarella E.,Scientific Institute Foundation Santa Lucia | Frolli A.,The Second University of Naples | Esposito D.,Scientific Institute Irccs Eugenio Medea Regional Branch Of Ostuni | And 6 more authors.
PLoS ONE | Year: 2013

Asperger syndrome (AS) is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD) characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right); mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms. © 2013 Conson et al.


Conson M.,The Second University of Naples | Mazzarella E.,Scientific Institute Foundation Santa Lucia | Esposito D.,Scientific Institute Irccs Eugenio Medea Regional Branch Of Ostuni | Grossi D.,The Second University of Naples | And 3 more authors.
Autism Research | Year: 2015

Embodied cognition theories hold that cognitive processes are grounded in bodily states. Embodied processes in autism spectrum disorders (ASD) have classically been investigated in studies on imitation. Several observations suggested that unlike typical individuals who are able of copying the model's actions from the model's position, individuals with ASD tend to reenact the model's actions from their own egocentric perspective. Here, we performed two behavioral experiments to directly test the ability of ASD individuals to adopt another person's point of view. In Experiment 1, participants had to explicitly judge the left/right location of a target object in a scene from their own or the actor's point of view (visual perspective taking task). In Experiment 2, participants had to perform left/right judgments on front-facing or back-facing human body images (own body transformation task). Both tasks can be solved by mentally simulating one's own body motion to imagine oneself transforming into the position of another person (embodied simulation strategy), or by resorting to visual/spatial processes, such as mental object rotation (nonembodied strategy). Results of both experiments showed that individual with ASD solved the tasks mainly relying on a nonembodied strategy, whereas typical controls adopted an embodied strategy. Moreover, in the visual perspective taking task ASD participants had more difficulties than controls in inhibiting other-perspective when directed to keep one's own point of view. These findings suggested that, in social cognitive tasks, individuals with ASD do not resort to embodied simulation and have difficulties in cognitive control over self- and other-perspective. © 2015 International Society for Autism Research and Wiley Periodicals, Inc.


PubMed | Scientific Institute Irccs Eugenio Medea Regional Branch Of Ostuni, Scientific Institute Foundation Santa Lucia and The Second University of Naples
Type: Journal Article | Journal: Autism research : official journal of the International Society for Autism Research | Year: 2015

Embodied cognition theories hold that cognitive processes are grounded in bodily states. Embodied processes in autism spectrum disorders (ASD) have classically been investigated in studies on imitation. Several observations suggested that unlike typical individuals who are able of copying the models actions from the models position, individuals with ASD tend to reenact the models actions from their own egocentric perspective. Here, we performed two behavioral experiments to directly test the ability of ASD individuals to adopt another persons point of view. In Experiment 1, participants had to explicitly judge the left/right location of a target object in a scene from their own or the actors point of view (visual perspective taking task). In Experiment 2, participants had to perform left/right judgments on front-facing or back-facing human body images (own body transformation task). Both tasks can be solved by mentally simulating ones own body motion to imagine oneself transforming into the position of another person (embodied simulation strategy), or by resorting to visual/spatial processes, such as mental object rotation (nonembodied strategy). Results of both experiments showed that individual with ASD solved the tasks mainly relying on a nonembodied strategy, whereas typical controls adopted an embodied strategy. Moreover, in the visual perspective taking task ASD participants had more difficulties than controls in inhibiting other-perspective when directed to keep ones own point of view. These findings suggested that, in social cognitive tasks, individuals with ASD do not resort to embodied simulation and have difficulties in cognitive control over self- and other-perspective.


Conson M.,The Second University of Naples | Trojano L.,The Second University of Naples | Trojano L.,IRCCS Institute of Telese Terme BN | Vitale C.,IDC Hermitage Capodimonte | And 7 more authors.
Human Movement Science | Year: 2014

It has been repeatedly demonstrated that mentally performing an action and mentally transforming body-parts entail simulation of one's own body movements, consistent with predictions of embodied cognition theories. However, the involvement of embodied simulation in mental transformation of whole-body images is still disputed. Here, we assessed own body transformation in Parkinson's disease (PD) patients with symptoms most affecting the left or the right body side. PD patients were required to perform left-right judgments on front-facing or back-facing human figures, and a letter rotation task. Results demonstrated that PD patients were selectively impaired in judging the side of back-facing human figures corresponding to their own most affected side, but performed as well as healthy subjects on mental transformation of front-facing bodies and on letter rotation. These findings demonstrate a parallel impairment between motor and mental simulation mechanisms in PD patients, thus highlighting the specific contribution of embodied cognition to mental transformation of whole-body images. © 2014.


Gizzi L.,University of Gottingen | Gizzi L.,Foro Italico University of Rome | Nielsen J.F.,University of Aarhus | Felici F.,Foro Italico University of Rome | And 2 more authors.
Journal of Neurophysiology | Year: 2011

It has been hypothesized that the coordinated activation of muscles is controlled by the central nervous system by means of a small alphabet of control signals (also referred to as activation signals) and motor modules (synergies). We analyzed the locomotion of 10 patients recently affected by stroke (maximum of 20 wk) and compared it with that of healthy controls. The aim was to assess whether the walking of subacute stroke patients is based on the same motor modules and/or activation signals as healthy subjects. The activity of muscles of the lower and upper limb and the trunk was measured and used for extracting motor modules. Four modules were sufficient to explain the majority of variance in muscle activation in both controls and patients. Modules from the affected side of stroke patients were different from those of healthy controls and from the unaffected side of stroke patients. However, the activation signals were similar between groups and between the affected and unaffected side of stroke patients, and were characterized by impulses at specific time instants within the gait cycle, underlying an impulsive controller of gait. In conclusion, motor modules observed in healthy subjects during locomotion are different from those used by subacute stroke patients, despite similar impulsive activation signals. We suggest that this pattern is consistent with a neuronal network in which the timing of activity generated by central pattern generators is directed to the motoneurons via a premotor network that distributes the activity in a task-dependent manner determined by sensory and descending control information. © 2011 the American Physiological Society.


PubMed | University of Salerno, Scientific Institute Foundation Santa Lucia, The Second University of Naples, University of Naples Federico II and Parthenope University of Naples
Type: | Journal: Human movement science | Year: 2014

It has been repeatedly demonstrated that mentally performing an action and mentally transforming body-parts entail simulation of ones own body movements, consistent with predictions of embodied cognition theories. However, the involvement of embodied simulation in mental transformation of whole-body images is still disputed. Here, we assessed own body transformation in Parkinsons disease (PD) patients with symptoms most affecting the left or the right body side. PD patients were required to perform left-right judgments on front-facing or back-facing human figures, and a letter rotation task. Results demonstrated that PD patients were selectively impaired in judging the side of back-facing human figures corresponding to their own most affected side, but performed as well as healthy subjects on mental transformation of front-facing bodies and on letter rotation. These findings demonstrate a parallel impairment between motor and mental simulation mechanisms in PD patients, thus highlighting the specific contribution of embodied cognition to mental transformation of whole-body images.


Zampagni M.L.,Scientific Institute Foundation Santa Lucia | Zampagni M.L.,University of Trento | Brigadoi S.,University of Padua | Schena F.,University of Trento | And 2 more authors.
Scandinavian Journal of Medicine and Science in Sports | Year: 2011

Here, we studied posture and movement coordination adopted by expert climbers. The investigation of such expertise might be of particular interest to gain understanding about the mechanisms underlying the biomechanical control of vertical quadrupedal locomotion. A novel custom setup was developed to analyze the motion of the center-of-mass (COM) and complementary information about the dynamic distribution of vertical reaction forces under the feet during climbing in nine elite climbers (EC) and nine control subjects. Two adaptive features were found in EC. First, unexpectedly they tended to maintain larger COM distances from the wall relative to controls, during both the static and dynamic phases of vertical motion (by ~5cm in both cases). Second, while the control subjects tended to restrain the lateral motion of the COM, all EC demonstrated systematic COM oscillations (~1.3 times larger) associated with a significant alternating dynamic redistribution of the body weight between the limbs during the double support phase. The latter phenomenon likely reflects an adopted basic climbing strategy in experts. Furthermore, a convergence of the optimal solution towards a more diagonal climbing strategy in EC may shed light on the origin of the diagonal gait in primates and early hominids habituated to quadrupedal vertical locomotion. © 2010 John Wiley & Sons A/S.


PubMed | Scientific Institute Foundation Santa Lucia, The Second University of Naples and University College London
Type: Journal Article | Journal: Journal of autism and developmental disorders | Year: 2016

Developmental data suggested that mental simulation skills become progressively dissociated from overt motor activity across development. Thus, efficient simulation is rather independent from current sensorimotor information. Here, we tested the impact of bodily (sensorimotor) information on simulation skills of adolescents with Autism Spectrum Disorders (ASD). Typically-developing (TD) and ASD participants judged laterality of hand images while keeping one arm flexed on chest or while holding both arms extended. Both groups were able to mentally simulate actions, but this ability was constrained by body posture more in ASD than in TD adolescents. The strong impact of actual body information on motor simulation implies that simulative skills are not fully effective in ASD individuals.


Conson M.,The Second University of Naples | Errico D.,The Second University of Naples | Mazzarella E.,Scientific Institute Foundation Santa Lucia | De Bellis F.,The Second University of Naples | And 3 more authors.
Experimental Brain Research | Year: 2015

Judgments on laterality of hand stimuli are faster and more accurate when dealing with one’s own than others’ hand, i.e. the self-advantage. This advantage seems to be related to activation of a sensorimotor mechanism while implicitly processing one’s own hands, but not during explicit one’s own hand recognition. Here, we specifically tested the influence of proprioceptive information on the self-hand advantage by manipulating participants’ body posture during self and others’ hand processing. In Experiment 1, right-handed healthy participants judged laterality of either self or others’ hands, whereas in Experiment 2, an explicit recognition of one’s own hands was required. In both experiments, the participants performed the task while holding their left or right arm flexed with their hand in direct contact with their chest (“flexed self-touch posture”) or with their hand placed on a wooden smooth surface in correspondence with their chest (“flexed proprioceptive-only posture”). In an “extended control posture”, both arms were extended and in contact with thighs. In Experiment 1 (hand laterality judgment), we confirmed the self-advantage and demonstrated that it was enhanced when the subjects judged left-hand stimuli at 270° orientation while keeping their left arm in the flexed proprioceptive-only posture. In Experiment 2 (explicit self-hand recognition), instead, we found an advantage for others’ hand (“self-disadvantage”) independently from posture manipulation. Thus, position-related proprioceptive information from left non-dominant arm can enhance sensorimotor one’s own body representation selectively favouring implicit self-hands processing. © 2015, Springer-Verlag Berlin Heidelberg.


Conson M.,The Second University of Naples | Errico D.,The Second University of Naples | Mazzarella E.,Scientific Institute Foundation Santa Lucia | Giordano M.,The Second University of Naples | And 2 more authors.
PLoS ONE | Year: 2015

Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing. © 2015 Conson et al.

Loading Scientific Institute Foundation Santa Lucia collaborators
Loading Scientific Institute Foundation Santa Lucia collaborators