Time filter

Source Type

Albini A.,IRCCS Arcispedale Santa Maria Nuova in Reggio Emilia | Briga D.,Scientific and Technological Pole | Conti M.,SantOrsola Malpighi Hospital | Bruno A.,Scientific and Technological Pole | And 7 more authors.
Rapid Communications in Mass Spectrometry | Year: 2015

Rationale Surface-Activated Chemical Ionization/Electrospray Ionization mass spectrometry (SACI/ESI-MS) is a technique with high sensitivity and low noise that allows accurate biomarker discovery studies. We developed a dedicated SACI/ESI software, named SANIST, for both biomarker fingerprint data acquisition and as a diagnostic tool, using prostate cancer (PCa) as the disease of interest. Methods Liquid chromatography (LC)/SACI/ESI-MS technology was employed to detect a potential biomarker panel for PCa disease prediction. Serum from patients with histologically confirmed or negative prostate biopsies for PCa was employed. The biomarker data (m/z or Thompson value, retention time and extraction mass chromatogram peak area) were stored in an ascii database. SANIST software allowed identification of potential biomarkers. A Bayesian scoring algorithm developed in house allowed sample separation based on comparison with samples in the database. Results Biomarker candidates from the carnitine family were detected at significantly lower levels in patients showing histologically confirmed PCa. Using these biomarkers, the SANIST scoring algorithm allowed separation of patients with PCa from biopsy negative subjects with high accuracy and sensitivity. Conclusions SANIST was able to rapidly identify and perform a preliminary evaluation of the potential diagnostic efficiency of potential biomarkers for PCa. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.

Bassani B.,Scientific and Technological Pole | Bartolini D.,Scientific and Technological Pole | Pagani A.,Scientific and Technological Pole | Principi E.,Scientific and Technological Pole | And 5 more authors.
PLoS ONE | Year: 2016

Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB. © 2016 Bassani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Discover hidden collaborations