Entity

Time filter

Source Type

Science and, United States

Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-04-2015 | Award Amount: 6.28M | Year: 2016

VINEYARD will develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by using typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). VINEYARD will develop two types of energy-efficient servers integrating two novel hardware accelerator types: coarse-grain programmable dataflow engines and fine-grain all-programmable FPGAs that accommodate multiple ARM cores. The former will be suitable for data centre applications that can be represented in dataflow graphs while the latter will be used for accelerating applications that need tight communication between the processor and the hardware accelerators. Both types of programmable accelerators will be customized based on application requirements, resulting in higher performance and significantly reduced energy budgets. VINEYARD will additionally develop a new programming framework and the required system software to hide the programming complexity of the resulting heterogeneous system based on the hardware accelerators. This programming framework will also allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer efficient energy use. VINEYARD will foster the expansion of the soft-IP cores industry, currently limited in the embedded systems, to in data centre market. The VINEYARD consortium has strong industrial foundations, and covers the whole value chain in the data-centre ecosystem; from the data-centre vendors up to the data-centre application programmers. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases a) a bioinformatics application for high-accuracy brain modelling, b) two critical financial applications and c) a big-data analysis application.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-1-2014 | Award Amount: 19.05M | Year: 2015

EUDAT2020 brings together a unique consortium of e-infrastructure providers, research infrastructure operators, and researchers from a wide range of scientific disciplines under several of the ESFRI themes, working together to address the new data challenge. In most research communities, there is a growing awareness that the rising tide of data will require new approaches to data management and that data preservation, access and sharing should be supported in a much better way. Data, and a fortiori Big Data, is a cross-cutting issue touching all research infrastructures. EUDAT2020s vision is to enable European researchers and practitioners from any research discipline to preserve, find, access, and process data in a trusted environment, as part of a Collaborative Data Infrastructure (CDI) conceived as a network of collaborating, cooperating centres, combining the richness of numerous community-specific data repositories with the permanence and persistence of some of Europes largest scientific data centres. EUDAT2020 builds on the foundations laid by the first EUDAT project, strengthening the links between the CDI and expanding its functionalities and remit. Covering both access and deposit, from informal data sharing to long-term archiving, and addressing identification, discoverability and computability of both long-tail and big data, EUDAT2020s services will address the full lifecycle of research data. One of the main ambitions of EUDAT2020 is to bridge the gap between research infrastructures and e-Infrastructures through an active engagement strategy, using the communities that are in the consortium as EUDAT beacons and integrating others through innovative partnerships. During its three-year funded life, EUDAT2020 will evolve the CDI into a healthy and vibrant data-infrastructure for Europe, and position EUDAT as a sustainable infrastructure within which the future, changing requirements of a wide range of research communities are addressed.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: INNOSUP-7-2015 | Award Amount: 1.69M | Year: 2016

Current research and practice on Open Innovation (OI) has not given emphasis on the ability of SMEs to develop and implement OI strategies - the lessons learned from large firms are not readily transferable to their context. INSPIRE aims to thoroughly investigate how OI is managed and organised in SMEs in order to leverage and expand the existing scattered initiatives and professionalize their services. The project seeks to understand in depth good practices of OI in SMEs across Europe, including the barriers they experience, the critical success factors and the open innovation pathways they follow. Good practices will be identified in all varieties of SMEs in terms of economic context, innovation trajectory (e.g. both high-tech and low-tech SMEs) and stage of lifetime. The understanding of good practices will allow the design, development and validation of an Integrated Toolbox for OI in SMEs to enable the professional management of OI by SMEs in various kinds of open innovation initiatives (e.g. facilitated by large corporations, private-public partnerships). The Toolbox will include good practices, indicators and management modules to support the internal innovation activities of an SME and their interaction with OI partners. The Toolbox will be modular and it will include three prototypical scenarios of usage that can be flexibly adjusted to individual needs of SMEs. The Integrated Toolbox will be developed as a web platform and it will be validated through a series of pilots in real life OI projects carried out by SMEs across Europe. Moreover, the project will develop a deployment plan for the Open Innovation System to initiate an EU-wide strategic engagement of innovation stakeholders and spread the practices of OI. The consortium includes a variety of competencies to access the whole Open Innovation chain across a range of geographical, economic and SMEs contexts and includes academics, practitioners and intermediaries working with SMEs on Open Innovation.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-4-2014-2015 | Award Amount: 14.99M | Year: 2015

ASTERICS (Astronomy ESFRI & Research Infrastructure Cluster) aims to address the cross-cutting synergies and common challenges shared by the various Astronomy ESFRI facilities (SKA, CTA, KM3Net & E-ELT). It brings together for the first time, the astronomy, astrophysics and particle astrophysics communities, in addition to other related research infrastructures. The major objectives of ASTERICS are to support and accelerate the implementation of the ESFRI telescopes, to enhance their performance beyond the current state-of-the-art, and to see them interoperate as an integrated, multi-wavelength and multi-messenger facility. An important focal point is the management, processing and scientific exploitation of the huge datasets the ESFRI facilities will generate. ASTERICS will seek solutions to these problems outside of the traditional channels by directly engaging and collaborating with industry and specialised SMEs. The various ESFRI pathfinders and precursors will present the perfect proving ground for new methodologies and prototype systems. In addition, ASTERICS will enable astronomers from across the member states to have broad access to the reduced data products of the ESFRI telescopes via a seamless interface to the Virtual Observatory framework. This will massively increase the scientific impact of the telescopes, and greatly encourage use (and re-use) of the data in new and novel ways, typically not foreseen in the original proposals. By demonstrating cross-facility synchronicity, and by harmonising various policy aspects, ASTERICS will realise a distributed and interoperable approach that ushers in a new multi-messenger era for astronomy. Through an active dissemination programme, including direct engagement with all relevant stakeholders, and via the development of citizen scientist mass participation experiments, ASTERICS has the ambition to be a flagship for the scientific, industrial and societal impact ESFRI projects can deliver.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 11.76M | Year: 2015

NFFA-EUROPE will implement the first open-access research infrastructure as a platform supporting comprehensive projects for multidisciplinary research at the nanoscale extending form synthesis to nanocharacterization to theory and numerical simulation. The integration and the extension of scope of existing specialized infrastructures within an excellence network of knowledge and know-how will enable a large number of researchers from diverse disciplines to carry out advanced proposals impacting science and innovation. The full suite of key infrastructures for nanoscience will become, through the NFFA-EUROPE project, accessible to a broader community extended to research actors operating at different levels of the value chain, including SMEs and applied research, that are currently missing the benefits of these enabling technologies. NFFA-EUROPE sets out to offer an integrated, distributed infrastructure to perform comprehensive nanoscience and nanotechnology projects from synthesis and nanolithography (with nanofoundry installations) to advanced characterization and theoretical modellization/numerical simulation (with experimental installations including analytical large scale facilities and a distributed theoretical installation including high-performance computing). Coordinated access will be given to complementary facilities co-located in nine well distributed main sites in Europe, ensuring the optimal match between user proposal and technical offer. The research activity of the Consortium will realize innovative solutions on key bottlenecks of nanoscience research, therefore upgrading the facility quality and uniqueness.

Discover hidden collaborations