Science and Technology Facilities Council

Science and, United States

Science and Technology Facilities Council

Science and, United States

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.00M | Year: 2016

The SeaDataNet pan-European infrastructure has been developed by NODCs and major research institutes from 34 countries. Over 100 marine data centres are connected and provide discovery and access to data resources for all European researchers. Moreover, SeaDataNet is a key infrastructure driving several portals of the European Marine Observation and Data network (EMODnet), initiated by EU DG-MARE for Marine Knowledge, MSFD, and Blue Growth. SeaDataNet complements the Copernicus Marine Environmental Monitoring Service (CMEMS), coordinated by EU DG-GROW. However, more effective and convenient access is needed to better support European researchers. The standards, tools and services developed must be reviewed and upgraded to keep pace with demand, such as developments of new sensors, and international and IT standards. Also EMODnet and Copernicus pose extra challenges to boost performance and foster INSPIRE compliance. More data from more data providers must be made available, from European and international research projects and observing programmes. SeaDataCloud aims at considerably advancing SeaDataNet services and increasing their usage, adopting cloud and HPC technology for better performance. More users will be engaged and for longer sessions by including advanced services in a Virtual Research Environment. Researchers will be empowered with a collection of services and tools, tailored to their specific needs, supporting marine research and enabling generation of added-value products. Data concern the wide range of in situ observations and remote sensing data. To have access to the latest cloud technology and facilities, SeaDataNet will cooperate with EUDAT, a network of computing infrastructures that develop and operate a common framework for managing scientific data across Europe. SeaDataCloud will improve services to users and data providers, optimise connecting data centres and streams, and interoperate with other European and international networks.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.51M | Year: 2017

RadioNet is a consortium of 28 institutions in Europe, Republic of Korea and South Africa, integrating at European level world-class infrastructures for research in radio astronomy. These include radio telescopes, telescope arrays, data archives and the globally operating European Network for Very Long Baseline Interferometry (EVN). RadioNet is de facto widely regarded to represent the interests of radio astronomy in Europe. A comprehensive, innovative and ambitious suite of actions is proposed that fosters a sustainable research environment. Building on national investments and commitments to operate these facilities, this specific EC program leverages the capabilities on a European scale. The proposed actions include: - Merit-based trans-national access to the RadioNet facilities for European and for the first time also for third country users; and integrated and professional user support that fosters continued widening of the community of users. - Innovative R&D, substantially enhancing the RadioNet facilities and taking leaps forward towards harmonization, efficiency and quality of exploitation at lower overall cost; development and delivery of prototypes of specialized hardware, ready for production in SME industries. - Comprehensive networking measures for training, scientific exchange, industry cooperation, dissemination of scientific and technical results; and policy development to ensure long-term sustainability of excellence for European radio astronomy. RadioNet is relevant now, it enables cutting-edge science, top-level R&D and excellent training for its European facilities; with the Atacama Large Millimetre Array (ALMA) and the ESFRI-listed Square Kilometre Array (SKA) defined as global radio telescopes, RadioNet assures that European radio astronomy maintains its leading role into the era of these next-generation facilities by involving scientists and engineers in the scientific use and innovation of the outstanding European facilities.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EINFRA-22-2016 | Award Amount: 3.00M | Year: 2017

The goal of AARC2 is to design an AAI framework to develop interoperable AAI, to enable researchers to access the whole research and infrastructure service portfolio with one login. AARC2s objectives are: 1. enable federated access in research communities participating in AARC2 2. assist research communities to map their requirements to concrete service offerings 3. support research (e-)infrastructures to implement the integrated architecture and policies frameworks developed by AARC project 4. offer different trainings to adopt AARC/AARC2 results 5. enhance the integrated architecture AARC2 objectives will be achieved by: - Piloting selected research community use-cases (SA1) - Showcasing ready-to-use AAI solutions and pilot results to infrastructures (SA1-NA2) - Developing a virtual Competence Centre where infrastructure representatives and AARC2 team discuss AARC2 results deployment and approaches to use-cases (all WPs) - Promoting federated access and adoption of AARC2 results via training and outreach (NA2) - Expand support for new technologies and policies (JRA1 and NA3). - Follow a user-driven approach: development driven by use-cases and continuous community feedback on AARC2 work. Relevance to the work programme: - AARC2 will work with existing e-infrastructures and ESFRI projects to deploy and enhance (JRA1) the integrated AAI (built on eduIGAIN and federated access) delivered by AARC (obj1Development of a pan-European identity federation) - Use-cases that meet integration (accessing services offered by multiple e-infrastructures) and data-rich aspects included in AARC2 (SA1). AARC2 will work to enable federated access and to map the use-cases to existing AAI services and policy frameworks (obj2Stimulate AAI services supporting communities in the data-rich era) - AARC2 will liaise with security groups, NRENs and infrastructures to address best practices in cybersecurity and assurance (see NA3). (obj3Deliver an integrated infrastructure)


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.01M | Year: 2017

Europe has become a global leader in optical-near infrared astronomy through excellence in space and ground-based experimental and theoretical research. While the major infrastructures are delivered through major national and multi-national agencies (ESO, ESA) their continuing scientific competitiveness requires a strong community of scientists and technologists distributed across Europes nations. OPTICON has a proven record supporting European astrophysical excellence through development of new technologies, through training of new people, through delivering open access to the best infrastructures, and through strategic planning for future requirements in technology, innovative research methodologies, and trans-national coordination. Europes scientific excellence depends on continuing effort developing and supporting the distributed expertise across Europe - this is essential to develop and implement new technologies and ensure instrumentation and infrastructures remain cutting edge. Excellence depends on continuing effort to strengthen and broaden the community, through networking initiatives to include and then consolidate European communities with more limited science expertise. Excellence builds on training actions to qualify scientists from European communities which lack national access to state of the art research infrastructures to compete successfully for use of the best available facilities. Excellence depends on access programmes which enable all European scientists to access the best infrastructures needs-blind, purely on competitive merit. Global competitiveness and the future of the community require early planning of long-term sustainability, awareness of potentially disruptive technologies, and new approaches to the use of national-scale infrastructures under remote or robotic control. OPTICON will continue to promote this excellence, global competitiveness and long-term strategic planning.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRADEV-04-2016 | Award Amount: 9.95M | Year: 2017

The EOSCpilot project will support the first phase in the development of the European Open Science Cloud (EOSC) as described in the EC Communication on European Cloud Initiatives [2016]. It will establish the governance framework for the EOSC and contribute to the development of European open science policy and best practice; It will develop a number of pilots that integrate services and infrastructures to demonstrate interoperability in a number of scientific domains; and It will engage with a broad range of stakeholders, crossing borders and communities, to build the trust and skills required for adoption of an open approach to scientific research . These actions will build on and leverage already available resources and capabilities from research infrastructure and e-infrastructure organisations to maximise their use across the research community. The EOSCpilot project will address some of the key reasons why European research is not yet fully tapping into the potential of data. In particular, it will: reduce fragmentation between data infrastructures by working across scientific and economic domains, countries and governance models, and improve interoperability between data infrastructures by demonstrating how data and resources can be shared even when they are large and complex and in varied formats, In this way, the EOSC pilot project will improve the ability to reuse data resources and provide an important step towards building a dependable open-data research environment where data from publicly funded research is always open and there are clear incentives and rewards for the sharing of data and resources.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRASUPP-03-2016 | Award Amount: 3.00M | Year: 2017

The objective of the AENEAS project is to develop a concept and design for a distributed, federated European Science Data Centre (ESDC) to support the astronomical community in achieving the scientific goals of the Square Kilometre Array (SKA). The scientific potential of the SKA radio telescope is unprecedented and represents one of the highest priorities for the international scientific community. By the same token, the large scale, rate, and complexity of data the SKA will generate, present challenges in data management, computing, and networking that are similarly world-leading. SKA Regional Centres (SRC) like the ESDC will be a vital resource to enable the community to take advantage of the scientific potential of the SKA. Within the tiered SKA operational model, the SRCs will provide essential functionality which is not currently provisioned within the directly operated SKA facilities. AENEAS brings together all the European member states currently part of the SKA project as well as potential future EU SKA national partners, the SKA Organisation itself, and a larger group of international partners including the two host countries Australia and South Africa.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-06-2016 | Award Amount: 5.44M | Year: 2017

Fog computing brings cloud computing capabilities closer to the end-device and users, while enabling location-dependent resource allocation, low latency services, and extending significantly the IoT services portfolio as well as market and business opportunities in the cloud sector. With the number of devices exponentially growing globally, new cloud and fog models are expected to emerge, paving the way for shared, collaborative, extensible mobile, volatile and dynamic compute, storage and network infrastructure. When put together, cloud and fog computing create a new stack of resources, which we refer to as Fog-to-Cloud (F2C), creating the need for a new, open and coordinated management ecosystem. The mF2C proposal sets the goal of designing an open, secure, decentralized, multi-stakeholder management framework, including novel programming models, privacy and security, data storage techniques, service creation, brokerage solutions, SLA policies, and resource orchestration methods. The proposed framework is expected to set the foundations for a novel distributed system architecture, developing a proof-of-concept system and platform, to be tested and validated in real-world use cases, as envisioned by the industrial partners in the consortium with significant interest in rapid innovation in the cloud computing sector.


Grant
Agency: European Commission | Branch: H2020 | Program: COFUND-PCP | Phase: ICT-08-2015 | Award Amount: 6.77M | Year: 2016

Over the coming 10-15 years the generation of vast amounts of data created by scientific research domains will create enormous challenges for capturing, managing and processing of this data. Tests have been made but today commercial cloud services do not play a significant role in the production computing environments for the publicly funded research sector in Europe. Stimulated by the Pre-Commercial Procurement (PCP) commitment of leading research organisations from 7 countries, HNSciCloud will pull together commercial cloud service providers, publicly funded e-Infrastructures and the buyers in-house resources to build a hybrid cloud platform on top of which a competitive marketplace of European cloud players can develop their own services for a wider range of users. This project will bring Europes technical development, policy and procurement activities together to remove fragmentation and maximise exploitation. The alignment of commercial and public (regional, national, and European) strategies will increase the rate of innovation. Through a competitive series of design, prototype and pilot steps, HNSciCloud will contract suppliers to deliver a 5% scale deployment of a hybrid cloud platform that can address the extreme needs of world class scientific research, including: Catalog of secure and interoperable services from multiple suppliers that have successfully passed an international recognised certification process Agile procurement process suitable for the dynamic cloud services market and tailored to the needs of the public research sector Development of monitoring frameworks to ensure compliance with international security and interoperability standards, performance criteria and financial benchmarking against global market leaders. The resulting common platform will be evaluated by end-users and exploited as the incubator for new businesses and scientific activities engaging a growing number of buyers, suppliers & users.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: INFRAINNOV-02-2016 | Award Amount: 2.28M | Year: 2017

Development and construction of accelerator based scientific Research Infrastructures are going through a deep paradigm change because of the need for large scale Technological Infrastructures at the forefront of technology to master the key accelerator and magnet science and technology needed for several fields. Indeed, because of the high technological level and of the increased size and time scale of projects, development and construction require more and more sophisticated R&D platforms on key accelerator and magnet technologies, large-scale facilities for their assembly, integration and verification, large concentrations of dedicated skilled personnel and long term relationships between laboratories and industry. In response to those challenges, a few large platforms specialized in interdisciplinary technologies and for applications of direct benefit to society are emerging. The emerging Technological Infrastructure is aiming at creating an efficient integrated ecosystem among laboratories focussed on R&D, with a long term vision for the technological needs of future RIs and industry, including SME, motivated by the innovative environment and the market created by the realisation of the technological needs of several RIs. With a timeline of 30 months, involving 10 Consortium partners, the AMICI proposal will ensure that A) a stronger and optimised integration model between the large existing technological infrastructures is developed and agreed upon, B) that this integrated ecosystem is attracting industries and fostering innovation based on accelerator and SC magnets cutting-edge developments, C) that strategy and roadmaps are clearly defined and understood to strongly position European industries and SMEs on the market of the construction of new Research Infrastructures worldwide, and D) that potential societal applications are identified and disseminated to the relevant partners of this ecosystem.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-04-2015 | Award Amount: 6.28M | Year: 2016

VINEYARD will develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by using typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). VINEYARD will develop two types of energy-efficient servers integrating two novel hardware accelerator types: coarse-grain programmable dataflow engines and fine-grain all-programmable FPGAs that accommodate multiple ARM cores. The former will be suitable for data centre applications that can be represented in dataflow graphs while the latter will be used for accelerating applications that need tight communication between the processor and the hardware accelerators. Both types of programmable accelerators will be customized based on application requirements, resulting in higher performance and significantly reduced energy budgets. VINEYARD will additionally develop a new programming framework and the required system software to hide the programming complexity of the resulting heterogeneous system based on the hardware accelerators. This programming framework will also allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer efficient energy use. VINEYARD will foster the expansion of the soft-IP cores industry, currently limited in the embedded systems, to in data centre market. The VINEYARD consortium has strong industrial foundations, and covers the whole value chain in the data-centre ecosystem; from the data-centre vendors up to the data-centre application programmers. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases a) a bioinformatics application for high-accuracy brain modelling, b) two critical financial applications and c) a big-data analysis application.

Loading Science and Technology Facilities Council collaborators
Loading Science and Technology Facilities Council collaborators