Time filter

Source Type

Houston, TX, United States

Mittlefehldt D.W.,NASA | Herrin J.S.,Science Analysis and Research Development | Herrin J.S.,Nanyang Technological University | Quinn J.E.,Science Analysis and Research Development | And 6 more authors.
Meteoritics and Planetary Science | Year: 2013

We have done petrologic and compositional studies on a suite of polymict eucrites and howardites to better understand regolith processes on their parent asteroid, which we accept is (4) Vesta. Taking into account noble gas results from companion studies, we interpret five howardites to represent breccias assembled from the true regolith: Elephant Moraine (EET) 87513, Grosvenor Mountains (GRO) 95535, GRO 95602, Lewis Cliff (LEW) 85313, and Meteorite Hills (MET) 00423. We suggest that EET 87503 is paired with EET 87513, and thus is also regolithic. Pecora Escarpment (PCA) 02066 is dominated by melt-matrix clasts, which may have been formed from true regolith by impact melting. These meteorites display a range in eucrite:diogenite mixing ratio from 55:45 to 76:24. There is no correlation between degree of regolith character and Ni content. The Ni contents of howardite, eucrite, and diogenites (HEDs) are mostly controlled by the distribution of coarse chondritic clasts and metal grains, which in some cases resulted from individual, low-velocity accretion events, rather than extensive regolith gardening. Trace element compositions indicate that the mafic component of HED polymict breccias is mostly basalt similar to main-group eucrites; Stannern-trend basaltic debris is less common. Pyroxene compositions show that some trace element-rich howardites contain abundant debris from evolved basalts, and that cumulate gabbro debris is present in some breccias. The scale of heterogeneity varies considerably; regolithic howardite EET 87513 is more homogeneous than fragmental howardite Queen Alexandra Range (QUE) 97001. Individual samples of a given howardite can have different compositions even at roughly 5 g masses, indicating that obtaining representative meteorite compositions requires multiple or large samples. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

Cartwright J.A.,Max Planck Institute for Chemistry | Ott U.,Max Planck Institute for Chemistry | Ott U.,University of West Hungary | Mittlefehldt D.W.,NASA | And 8 more authors.
Geochimica et Cosmochimica Acta | Year: 2013

We report noble gas data (helium (He), neon (Ne), argon (Ar), krypton (Kr) and xenon (Xe)), nominal gas retention ages (K-Ar, U-Th-He) and cosmic ray exposure (CRE) ages for the ten howardites EET 83376, EET 99408, LEW 85313, MET 00423, MET 96500, PCA 02066, PRA 04401, QUE 94200, QUE 97002, and SCO 06040, in research to better understand the regolith of the HED parent body - Vesta - through a combined petrological, compositional and noble gas study. Our main aim is to determine which howardites are truly regolithic - as defined by the presence of solar noble gas components (e.g. solar wind (SW), fractionated solar wind (FSW)) and/or by the presence of planetary components (e.g. Q, HL) associated with foreign clasts of carbonaceous chondrite material within the breccias. Of our ten howardites, four (LEW 85313, MET 00423, PRA 04401 and SCO 06040) show evidence for a regolithic origin, with noble gas ratios indicating the presence of trapped components. Howardites PRA 04401 and SCO 06040 contain significant amounts of CM type carbonaceous chondrite material, and these samples are dominated by a planetary component similar to that observed in CM meteorites Murchison and Maribo. Overall, we find evidence for two regolithic groups with different release trends: (1) SW/FSW component dominated howardites (LEW 85313 and MET 00423), where SW/FSW is dominant at low temperature releases, and less pronounced at higher temperatures; (2) Planetary component dominated howardites (PRA 04401 and SCO 06040) that also contain SW/FSW - the planetary component is associated with incorporated carbonaceous chondrite material, and is dominant at the mid-temperature release. The remaining six howardites EET 83376, EET 99408, MET 96500, PCA 02066, QUE 94200, and QUE 97002, are dominated by cosmogenic noble gases, and are not considered regolithic. Previous work by Warren et al. (2009) suggested that high siderophile element contents (specifically nickel (Ni)>300μg/g) were a regolith indicator for howardites, in addition to restricted Al2O3 contents (8-9wt.%) representing a eucrite/diogenite mixing ratio of 2:1 as indicative of an ancient well-mixed regolith. These parameters were based on five 'gas-rich' howardites. However, we find no obvious correlation between these parameters and SW/FSW or planetary noble gas content in our howardite samples. We conclude that howardite regolith parameters are not as simple as those defined by Warren et al. (2009), where three of the five howardites used contained foreign CM material, which may have caused a bias in their defined parameters. We conclude that sideophile abundances alone cannot be used to determine the regolithic nature of a sample: noble gas analysis remains a key parameter, where it is important to distinguish between planetary-dominated and SW-dominated regolithic howardites. © 2012 Elsevier Ltd.

Discover hidden collaborations