Pullman, WA, United States
Pullman, WA, United States

Schweitzer Engineering Laboratories, Inc. designs, manufactures, and supports products and services ranging from generator and transmission protection to distribution automation and control systems. Founded in 1982 by Edmund O. Schweitzer III, SEL shipped the world's first digital protective relay. Presently, the company designs and manufactures embedded system products for protecting, monitoring, control, and metering of electric power systems. E. O. Schweitzer Manufacturing, a manufacturer of fault indicators and sensors started by Edmund O. Schweitzer, Jr. in 1949, became a division of SEL in 2005. Wikipedia.


Time filter

Source Type

Patent
Schweitzer Engineering Laboratories | Date: 2017-01-23

The present disclosure relates to calculating a fault location in an electric power transmission system based on traveling waves. In one embodiment, a system consistent with the present disclosure may be configured to detect a fault in an electric power transmission system. The system may include a traveling wave detection subsystem configured to detect and measure traveling waves on a transmission line and a fault location estimation subsystem. The fault location estimation subsystem may receive from the traveling wave detection subsystem a first plurality of traveling waves on the transmission line generated during a reference event. The fault location estimation subsystem may receive from the traveling wave detection subsystem a second plurality of traveling waves generated during an unplanned event. An unmatched traveling wave in the second plurality of waves may be detected and a location of the unplanned event based on the unmatched traveling wave.


Patent
Schweitzer Engineering Laboratories | Date: 2016-10-12

The present disclosure relates to a fault in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions associated with at least a portion of the electric power delivery system. A traveling wave detector may be configured to detect a traveling wave event based on the plurality of representations of electrical conditions. A traveling wave directional subsystem may be configured to calculate an energy value of the traveling wave event during an accumulation period based on the detection of the traveling wave by the traveling wave disturbance detector. A maximum and a minimum energy value may be determined during the accumulation period. A fault direction may be determined based on the maximum energy value and the minimum energy value. A fault detector subsystem configured to declare a fault based on the determined fault direction.


Patent
Schweitzer Engineering Laboratories | Date: 2016-10-13

A system for monitoring an electric power delivery system by obtaining high-frequency electric power system measurements and displaying event information is disclosed herein. The system may use the high-frequency electric power system information to detect traveling waves. The system may generate a display showing fault location on the electric power system, and timing of traveling waves received at locations on the electric power system. The display may include time on one axis and location on another axis. The display may include a waterfall display.


Patent
Schweitzer Engineering Laboratories | Date: 2016-10-13

A testing apparatus for imposing a traveling wave signal on an electric system signal for testing a fault detector is disclosed herein. The fault detector may be configured to simulate a fault at a particular location by controlling the timing of the traveling wave signal. The testing apparatus may be configured to impose multiple traveling wave signals to test the accuracy of the fault location determined by the fault detector. The testing apparatus may be configured to determine the calculation accuracy of the fault detector. The testing apparatus may impose a traveling wave signal on a signal simulating an electrical signal on an electric power delivery system. The testing apparatus may be used to test capabilities of a fault detector of detecting a fault using traveling waves or incremental quantities.


Patent
Schweitzer Engineering Laboratories | Date: 2016-12-29

The present application discloses systems and methods to determine loss of at least one electric power transmission line in an electric power transmission system. In various embodiments, a system consistent with the present disclosure may include an electrical parameter monitoring subsystem configured to receive electrical parameter measurements and to determine a change of the electrical measurements. An analysis subsystem may determine whether a change in the electrical measurements is indicative of loss of at least one transmission line and may calculate a number of transmission lines lost based on the change. In some embodiments, a remedial action subsystem may be configured to implement a remedial action in response to loss of at least one transmission line. The number of transmission lines lost may be determined based on an angle difference ratio and a power ratio between two buses in electrical transmission system.


Patent
Schweitzer Engineering Laboratories | Date: 2016-10-14

The present disclosure pertains to systems and methods for obtaining and processing high-frequency electric power system measurements for control and monitoring of an electric power system. High-frequency measurements may be used to detect traveling waves and/or to detect faults in the electric power system. In various embodiments, a processing device may receive high-frequency electric power system measurements from each of a local location and a remote location and may process the high-frequency electric power system measurements to identify and locate a fault. The occurrence of and location of a fault and may be used to implement protective actions to remediate identified faults.


Patent
Schweitzer Engineering Laboratories | Date: 2017-03-29

Electrical power machines are monitored according to the disclosure herein using time stamped mechanical conditions and electrical conditions. The mechanical conditions may include rotational position, calculated and time stamped rotational frequency, valve position, temperature, or vibration. The time stamped electrical conditions may include electrical power system frequency, electrical power machine field data, electrical power machine terminal information such as voltage and current, and the like. Electrical and mechanical time-stamped electrical power machine data from different machines that may be local or remote from each other may be compared for monitoring the machines.


Patent
Schweitzer Engineering Laboratories | Date: 2016-11-18

Disclosed herein are systems and methods for estimating a period and frequency of a waveform. In one embodiment, a system may comprise an input configured to receive a representation of the input waveform. A period determination subsystem may perform an iterative process to determine the variable period of the input waveform. The iterative process may comprise selection of an estimated window length, determination of an autocorrelation value based on the estimated window length, determination of an adjustment value to the window length to identify a maximum of the autocorrelation value; and determination of the variable period based on the window length associated with the maximum of the autocorrelation value. The period determination subsystem may perform the iterative process to track changes in the variable period of the input waveform. A control action subsystem may implement a control action based on the variable period of the input waveform.


The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include an incremental quantities subsystem configured to calculate an incremental current quantity and an incremental voltage quantity based on the plurality of representations. A fault detection subsystem may be configured to determine a fault type based on the incremental current quantity and the incremental voltage quantity, to select an applicable loop quantity, and to declare a fault based on the applicable loop quantity, the incremental voltage quantity, and the incremental current quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.


Patent
Schweitzer Engineering Laboratories | Date: 2016-12-07

Disclosed herein is a shaft-mounted monitor for monitoring conditions of a rotating shaft using a calculated rotational component of the rotating shaft. The monitor may include a sensor such as an accelerometer, thermal sensor, strain gauge, or the like. In various embodiments, a variety of parameters relating to the rotating shaft may be monitored, such as a temperature, rotational speed, angular position, torque, power, frequency, or the like. The monitor may include a wireless transmitter to transmit the monitored condition of the rotating shaft to an intelligent electronic device or a monitoring system.

Loading Schweitzer Engineering Laboratories collaborators
Loading Schweitzer Engineering Laboratories collaborators