School for Oncology and Developmental Biology GROW

Maastricht, Netherlands

School for Oncology and Developmental Biology GROW

Maastricht, Netherlands
Time filter
Source Type

Snijders Blok L.,Radboud University Nijmegen | Madsen E.,Duke University | Juusola J.,GeneDx | Gilissen C.,Radboud University Nijmegen | And 84 more authors.
American Journal of Human Genetics | Year: 2015

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. © 2015 The American Society of Human Genetics.

Paulussen A.D.C.,School for Oncology and Developmental Biology GROW | Schrander-Stumpel C.T.,School for Oncology and Developmental Biology GROW | Tserpelis D.C.J.,School for Oncology and Developmental Biology GROW | Spee M.K.M.,School for Oncology and Developmental Biology GROW | And 22 more authors.
European Journal of Human Genetics | Year: 2010

Holoprosencephaly is a severe malformation of the brain characterized by abnormal formation and separation of the developing central nervous system. The prevalence is 1:250 during early embryogenesis, the live-born prevalence is 1:16 000. The etiology of HPE is extremely heterogeneous and can be teratogenic or genetic. We screened four known HPE genes in a Dutch cohort of 86 non-syndromic HPE index cases, including 53 family members. We detected 21 mutations (24.4%), 3 in SHH, 9 in ZIC2 and 9 in SIX3. Eight mutations involved amino-acid substitutions, 7 ins/del mutations, 1 frame-shift, 3 identical poly-alanine tract expansions and 2 gene deletions. Pathogenicity of mutations was presumed based on de novo character, predicted non-functionality of mutated proteins, segregation of mutations with affected family-members or combinations of these features. Two mutations were reported previously. SNP array confirmed detected deletions; one spanning the ZIC2/ZIC5 genes (approx. 100 kb) the other a 1.45 Mb deletion including SIX2/SIX3 genes. The mutation percentage (24%) is comparable with previous reports, but we detected significantly less mutations in SHH: 3.5 vs 10.7% (P=0.043) and significantly more in SIX3: 10.5 vs 4.3% (P=0.018). For TGIF1 and ZIC2 mutation the rate was in conformity with earlier reports. About half of the mutations were de novo, one was a germ line mosaic. The familial mutations displayed extensive heterogeneity in clinical manifestation. Of seven familial index patients only two parental carriers showed minor HPE signs, five were completely asymptomatic. Therefore, each novel mutation should be considered as a risk factor for clinically manifest HPE, with the caveat of reduced clinical penetrance. © 2010 Macmillan Publishers Limited All rights reserved.

Sollis E.,Max Planck Institute for Psycholinguistics | Graham S.A.,Max Planck Institute for Psycholinguistics | Vino A.,Max Planck Institute for Psycholinguistics | Froehlich H.,University of Heidelberg | And 10 more authors.
Human Molecular Genetics | Year: 2016

De novo disruptions of the neural transcription factor FOXP1 are a recently discovered, rare cause of sporadic intellectual disability (ID). We report three new cases of FOXP1-related disorder identified through clinical whole-exome sequencing. Detailed phenotypic assessment confirmed that global developmental delay, autistic features, speech/language deficits, hypotonia and mild dysmorphic features are core features of the disorder. We expand the phenotypic spectrum to include sensory integration disorder and hypertelorism. Notably, the etiological variants in these cases include two missense variants within the DNA-binding domain of FOXP1. Only one such variant has been reported previously. The third patient carries a stop-gain variant. We performed functional characterization of the three missense variants alongside our stop-gain and two previously described truncating/frameshift variants. All variants severely disrupted multiple aspects of protein function. Strikingly, the missense variants had similarly severe effects on protein function as the truncating/frameshift variants. Our findings indicate that a loss of transcriptional repression activity of FOXP1 underlies the neurodevelopmental phenotype in FOXP1-related disorder. Interestingly, the three novel variants retained the ability to interact with wild-type FOXP1, suggesting these variants could exert a dominant-negative effect by interfering with the normal FOXP1 protein. These variants also retained the ability to interact with FOXP2, a paralogous transcription factor disrupted in rare cases of speech and language disorder. Thus, speech/language deficits in these individuals might be worsened through deleterious effects on FOXP2 function. Our findings highlight that de novo FOXP1 variants are a cause of sporadic ID and emphasize the importance of this transcription factor in neurodevelopment. © The Author 2015. Published by Oxford University Press. All rights reserved.

Hayflick S.J.,Oregon Health And Science University | Kruer M.C.,Sanford Childrens Health Research Center | Gregory A.,Oregon Health And Science University | Haack T.B.,TU Munich | And 39 more authors.
Brain | Year: 2013

Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features. © 2013 The Author.

Loading School for Oncology and Developmental Biology GROW collaborators
Loading School for Oncology and Developmental Biology GROW collaborators