Entity

Time filter

Source Type


Pablo H.,University of Montreal | Richardson N.D.,University of Montreal | Moffat A.F.J.,University of Montreal | Corcoran M.,NASA | And 47 more authors.
Astrophysical Journal | Year: 2015

We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations. © 2015. The American Astronomical Society. All rights reserved.. Source


Miroshnichenko A.S.,University of North Carolina at Greensboro | Pasechnik A.V.,University of Turku | Manset N.,CFHT Corporation | Carciofi A.C.,University of Sao Paulo | And 19 more authors.
Astrophysical Journal | Year: 2013

We describe the results of the world-wide observing campaign of the highly eccentric Be binary system δ Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 ± 0.0005 yr. Fitting of the He II 4686 Å line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M⊙) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the Hα line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R⊙. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that δ Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40° with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations. © 2013. The American Astronomical Society. All rights reserved. Source


Rauw G.,University of Liege | Morel T.,University of Liege | Naze Y.,University of Liege | Eversberg T.,Schnorringen Telescope Science Institute | And 28 more authors.
Astronomy and Astrophysics | Year: 2015

Context. The two Oe stars HD 45 314 and HD 60 848 have recently been found to exhibit very different X-ray properties: whilst HD 60 848 has an X-ray spectrum and the emission level typical of most OB stars, HD 45 314 features a much harder and brighter X-ray emission, making it a so-called γ Cas analogue. Aims. Monitoring the optical spectra could provide hints towards the origin of these very different behaviours. Methods. We analyse a large set of spectroscopic observations of HD 45 314 and HD 60 848, extending over 20 years. We further attempt to fit the Hα line profiles of both stars with a simple model of emission line formation in a Keplerian disk. Results. Strong variations in the strengths of the Hα, Hβ, and He Ι λ 5876 emission lines are observed for both stars. In the case of HD 60 848, we find a time lag between the variations in the equivalent widths of these lines, which is currently not understood. The emission lines are double peaked with nearly identical strengths of the violet and red peaks. The Hα profile of this star can be successfully reproduced by our model of a disk seen under an inclination of 30°. In the case of HD 45 314, the emission lines are highly asymmetric and display strong line profile variations. We find a major change in behaviour between the 2002 outburst and the one observed in 2013. This concerns both the relationship between the equivalent widths of the various lines and their morphologies at maximum strength (double-peaked in 2002 versus single-peaked in 2013). Our simple disk model fails to reproduce the observed Hα line profiles of HD 45 314. Conclusions. Our results further support the interpretation that Oe stars do have decretion disks similar to those of Be stars. Whilst the emission lines of HD 60 848 are explained well by a disk with a Keplerian velocity field, the disk of HD 45 314 seems to have a significantly more complex velocity field that could be another signature of the phenomenon that produces its peculiar X-ray emission. © ESO, 2015. Source


Fahed R.,University of Montreal | Moffat A.F.J.,University of Montreal | Zorec J.,CNRS Paris Institute of Astrophysics | Eversberg T.,Schnorringen Telescope Science Institute | And 27 more authors.
Proceedings of the International Astronomical Union | Year: 2010

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in january 2009. This object is known as the archetype of colliding wind binaries and has a relatively large period (≃8 years) and eccentricity (≃0.89). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates. © International Astronomical Union 2011. Source


Fahed R.,University of Montreal | Moffat A.F.J.,University of Montreal | Zorec J.,CNRS Paris Institute of Astrophysics | Eversberg T.,Schnorringen Telescope Science Institute | Chene A.N.,Herzberg Institute for Astrophysics
Stellar Winds in Interaction - Proceedings of the International ProAm Workshop on Stellar Winds | Year: 2010

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a relatively large period (∼ 8 years) and eccentricity (∼ 0.89). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates. Source

Discover hidden collaborations