Rueil - Malmaison, France
Rueil - Malmaison, France

Schneider Electric SE is a European multinational corporation that specializes in electricity distribution, automation management and produces installation components for energy management. It is headquartered in Rueil-Malmaison, France and is also based at the World Trade Center of Grenoble. Wikipedia.


Time filter

Source Type

The invention relates to a measuring device which comprises a measurement sensor (34) that picks up measurement values (5) of a time-variable physical measurement variable. According to the invention, a transmission value (17, 18, 19) is calculated by extrapolation from a sequence of measurement values (5, 6, 7) to a future point in time (16) and said value is made available for transmission to a processing unit.


Patent
Schneider Electric | Date: 2017-05-31

The present disclosure provides a transfer switching equipment, comprising a first switch set (1) and a second switch set (2). The transfer switching equipment is configured in a way that during the switching from a closed state of one of the first switch set (1) and the second switch set (2) to a closed state of the other of the first switch set (1) and the second switch set (2), there is a state in which the neutral poles of the first switch set (1) and the neutral pole of the second switch set (2) are closed at the same time while all phase poles of the first switch set (1) and all phase poles of the second switch set (2) are all opened. The transfer switching equipment has a simple and reliable structure and occupies a small space and can provide continuous voltage with high-quality during switching the power supply.


Patent
Schneider Electric | Date: 2017-03-08

An Uninterruptible Power Supply (UPS) system is provided. The UPS system comprises: an input (102) configured to receive input power having an input voltage level, an output (110) configured to provide output AC power to a load, a converter (104) coupled to the input (102) and configured to convert the input power into DC power having a DC voltage level, a DC bus (106) coupled to the converter (104) and configured to receive the DC power, an inverter (108) coupled to the DC bus (106) and configured to convert the DC power from the DC bus (106) into the output AC power and provide the output AC Power to the output (110), and a controller (114) configured to monitor the input voltage level, monitor a level of the output AC power, and operate the converter (104) to regulate the DC voltage level based on the input voltage level and the output AC power level.


Technology for creating and managing a geospatial network model (hereinafter network model) for a distribution network in a client environment using geospatial information system (GIS) data is disclosed. In some embodiments, the disclosed technology enables access of a network model for a distribution network stored on a client device, detection of one or more changes to the distribution network associated with the network model, validation the one or more changes to the distribution network against one or more validation rules and transmission of the one or more changes to the distribution network to a GIS database to update the current state of the distribution network in the GIS database.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-06-2015 | Award Amount: 17.86M | Year: 2016

By 2020, several areas of the HVAC pan-European transmission system will be operated with extremely high penetrations of Power Electronics(PE)-interfaced generators, thus becoming the only generating units for some periods of the day or of the year due to renewable (wind, solar) electricity. This will result in i) growing dynamic stability issues for the power system (possibly a new major barrier against future renewable penetration), ii) the necessity to upgrade existing protection schemes and iii) measures to mitigate the resulting degradation of power quality due to harmonics propagation. European TSOs from Estonia, Finland, France, Germany, Iceland, Ireland, Italy, Netherlands, Slovenia, Spain and UK have joined to address such challenges with manufacturers (Alstom, Enercon, Schneider Electric) and universities/research centres. They propose innovative solutions to progressively adjust the HVAC system operations. Firstly, a replicable methodology is developed for appraising the distance of any EU 28 control zone to instability due to PE proliferation and for monitoring it in real time, along with a portfolio of incremental improvements of existing technologies (the tuning of controllers, a pilot test of wide-area control techniques and the upgrading of protection devices with impacts on the present grid codes). Next, innovative power system control laws are designed to cope with the lack of synchronous machines. Numerical simulations and laboratory tests deliver promising control solutions together with recommendations for new PE grid connection rules and the development of a novel protection technology and mitigation of the foreseen power quality disturbances. Technology and economic impacts of such innovations are quantified together with barriers to be overcome in order to recommend future deployment scenarios. Dissemination activities support the deployment schemes of the project outputs based on knowledge sharing among targeted stakeholders at EC level.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: DS-01-2016 | Award Amount: 5.62M | Year: 2017

certMILS develops a security certification methodology for Cyber-physical systems (CPS). CPS are characterised by safety-critical nature, complexity, connectivity, and open technology. A common downside to CPS complexity and openness is a large attack surface and a high degree of dynamism that may lead to complex failures and irreparable physical damage. The legitimate fear of security or functional safety vulnerabilities in CPS results in arduous testing and certification processes. Once fielded, many CPS suffer from the motto: never change a running system. certMILS increases the economic efficiency and European competitiveness of CPS development, while demonstrating the effectiveness of safety & security certification of composable systems. The project employs a security-by-design concept originating from the avionics industry: Multiple Independent Levels of Security (MILS), which targets controlled information flow and resource usage amongst software applications. certMILS reduces certification complexity, promotes re-use, and enables secure updates to CPS throughout its life-cycle by providing certified separation of applications, i.e. if an application within a complex CPS fails or starts acting maliciously, other applications are unaffected. Security certification of complex systems to medium-high assurance levels is not solved today. The existing monolithic approaches cannot cope with the complexity of modern CPS. certMILS uses ISO/IEC 15408 and IEC 62443 to develop and applies a compositional security certification methodology to complex composable safety-critical systems operating in constantly evolving hostile environments. certMILS core results are standardised in a protection profile.certMILS develops three composable industrial CPS pilots (smart grid, railway, subway), certifies security of critical re-useable components, and ensures security certification for the pilots by certification labs in three EU countries with involvement of the authorities.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-02-2016 | Award Amount: 16.31M | Year: 2017

An inspiration for INVADE are the world-wide agreements on minimisation of human caused effects to climate change and energy efficiency targets set at the European Union with ambitious goals for reduction of greenhouse gas emission and for increase of renewable energy share. To enable a higher share of renewable energy sources to the smart grid and gain a traction in the market place a few critical barriers must be overcome. There is a deficiency of 1) flexibility and battery management systems 2) exploration of ICT solutions based on active end user participation 3) efficient integration of energy storage and transport sector (EVs), 4) novel business models supporting an increasing number of different actors in the grid. INVADE addresses these challenges by proposing to deliver a Cloud based flexibility management system integrated with EVs and batteries empowering energy storage at mobile, distributed and centralised levels to increase renewables share in the smart distribution grid. The project integrates different components: flexibility management system, energy storage technologies, electric vehicles and novel business models. It underpins these components with advanced ICT cloud based technologies to deliver the INVADE platform. The project will integrate the platform with existing infrastructure and systems at pilot sites in Bulgaria, Germany, Spain, Norway and the Netherlands and validate it through mobile, distributed and centralised use cases in the distribution grid in large scale demonstrations. Novel business models and extensive exploitation activities will be able to tread the fine line between maximizing profits for a full chain of stakeholders and optimizing social welfare while contributing to the standardization and regulation policies for the European energy market. A meaningful integration of the transport sector is represented by Norway and the Netherlands pilots with the highest penetration of EVs worldwide.


Grant
Agency: European Commission | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-07-2015 | Award Amount: 20.53M | Year: 2016

Embedded systems have significantly increased in technical complexity towards open, interconnected systems. This has exacerbated the problem of ensuring dependability in the presence of human, environmental and technological risks. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and automation of labor-intensive activities. Two large-scale projects are OPENCOSS and SafeCer, which dealt with assurance and certification of software-intensive critical systems using incremental and model-based approaches. OPENCOSS defined a Common Certification Language (CCL), unifying concepts from different industries to build a harmonized approach to reduce time and cost overheads, via facilitating the reuse of certification assets. SafeCer developed safety-oriented process lines, a component model, contract-based verification techniques, and process/product-based model-driven safety certification for compositional development and certification of CPSs. AMASS will create and consolidate a de-facto European-wide assurance and certification open tool platform, ecosystem and self-sustainable community spanning the largest CPS vertical markets. We will start by combining and evolving the OPENCOSS and SafeCer technological solutions towards end-user validated tools, and will enhance and perform further research into new areas not covered by those projects. The ultimate aim is to lower certification costs in face of rapidly changing product features and market needs. This will be achieved by establishing a novel holistic and reuse-oriented approach for architecture-driven assurance (fully compatible with standards e.g. AUTOSAR and IMA), multi-concern assurance (compliance demonstration, impact analyses, and compositional assurance of security and safety aspects), and for seamless interoperability between assurance/certification and engineering activities along with third-party activities (external assessments, supplier assurance).


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-02-2016 | Award Amount: 22.78M | Year: 2017

Five DSOs (CEZ distribuce, ERDF, EON, Enexis, Avacon) associated with power system manufacturers, electricity retailers and power system experts, propose a set of six demonstrations for 12 to 24 months. Within three years, they aim at validating the enabling role of DSOs in calling for flexibility sources according to local, time-varying merit orders. Demonstrations are designed to run 18 separate use cases involving one or several of the levers increasing the local energy system flexibility: energy storage technologies (electricity, heat, cold), demand response schemes with two coupling of networks (electricity and gas, electricity and heat/cold), the integration of grid users owning electric vehicles, and the further automation of grid operations including contributions of micro-grids. The use cases are clustered into three groups. Three use cases in Sweden and the Czech Republic address the enhancement of the distribution network flexibility itself. Five use cases in France, Germany and Sweden demonstrate the role of IT solutions to increase drastically the speed of automation of the distribution networks, which can then make the best use of either local single or aggregated flexibilities. Ten use cases in Czech Republic, France, The Netherlands and Sweden combine an increased network automation and an increased level of aggregation to validate the plausibility of local flexibility markets where both distributed generation and controllable loads can be valued. Replicability of the results is studied by the DSOs and industry with an in-depth analysis of the interchangeability and interoperability of the tested critical technology components. Dissemination targeting the European DSOs and all the stakeholders of the electricity value chain will be addressed by deployment roadmaps for the most promising use cases, thus nourishing the preparation of the practical implementation of the future electricity market design, the draft of which is expected by end of 2016.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: EEB-03-2016 | Award Amount: 8.80M | Year: 2016

The 20% primary energy consumption reduction targets set by the European Energy Efficiency Directive (EED), published in 2012, call for effective and wide-scale building heating and cooling systems upgrade strategies. These will be successful only if they base upon the right combination of technology innovation, industrial commitment and building owners awareness. In line with this statement, THERMOSS proposes an industry-focused, innovation-intensive approach to ease and foster the introduction of cutting-edge heating and cooling technologies for building energy retrofitting at European level, targeting residential buildings and buildings connected to District Heating and Cooling (DHC) networks. The aim of THERMOSS is to define a set of retrofitting heating and cooling packages based on cutting-edge, high-potential, market-ready technologies that are connected together thanks to an open ICT platform for smart energy management at building and district-level. The THERMOSS technologies have been picked out from the catalogs of prominent European industrial players, Bosch, Veolia, Exergy, Schneider Electric taking into account business profitability, energy efficiency and potential for large-scale deployment. They will be tuned, combined and sized as part of the project thanks to dedicated tools, to optimize their joint impact. THERMOSS advocates a geo-clustered approach to the definition of these packages, in order to increase the impact of the solutions with respect to specific climatic conditions and when applicable specific National policies (e.g. fiscal incentives) and regulations. The THERMOSS packages and the platform will be thoroughly demonstrated in seven experimental and demonstration sites, covering all the dimensions highlighted by the call: residential buildings, district heating and cooling networks, in different climatic zones.

Loading Schneider Electric collaborators
Loading Schneider Electric collaborators