Boston, United States
Boston, United States

Time filter

Source Type

Patent
Schepens Eye Research Institute | Date: 2015-03-19

The disclosure features systems for providing information to a user about the users environment, the system featuring a detection apparatus configured to obtain image information about the environment, where the image information corresponds to information at multiple distances relative to a position of the user within the environment, and an electronic processor configured to obtain focal plane distance information defining a set of one or more distance values relative to the position of the user within the environment, construct one or more confocal images of the environment, from the image information and the set of one or more distance values, wherein each of the one or more confocal images corresponds to a different distance value and comprises a set of pixels, and transform the one or more confocal images to form one or more representative images comprising fewer pixels and a lower dynamic range.


Patent
Schepens Eye Research Institute | Date: 2015-07-17

Systems, apparatus, and methods are provided for quantifying inter-ocular suppression in binocular vision impairment. The systems, apparatus, and methods may include a stimulus presentation device and a controller which present different stimuli to each eye of a patient. The stimuli can include letters, numbers, or shapes which are arranged in rows, and columns with a stimulus presented to each eye in a location corresponding a stimulus presented to the other eye. The combined contrast of corresponding stimuli equals a predetermined value, and this contrast can be adjusted with each iteration of stimuli presented. This adjustment can be based upon the patients reports of what is seen and adjustments made by an algorithm executed by the controller. Suppression can thus be determined in terms of visual field location and quantified.


Patent
Schepens Eye Research Institute | Date: 2016-11-18

Systems, apparatus, and methods are provided for quantifying inter-ocular suppression in binocular vision impairment. The systems, apparatus, and methods may include a stimulus presentation device and a controller which present different stimuli to each eye of a patient. The stimuli can include letters, numbers, or shapes which are arranged in rows, and columns with a stimulus presented to each eye in a location corresponding a stimulus presented to the other eye. The combined contrast of corresponding stimuli equals a predetermined value, and this contrast can be adjusted with each iteration of stimuli presented. This adjustment can be based upon the patients reports of what is seen and adjustments made by an algorithm executed by the controller. Suppression can thus be determined in terms of visual field location and quantified.


Patent
Massachusetts Eye, Ear Infirmary and Schepens Eye Research Institute | Date: 2016-10-12

Methods are described for predicting ancestral sequences for viruses or portions thereof. Also described are predicted ancestral sequences for adeno-associated virus (AAV) capsid polypeptides. The disclosure also provides methods of gene transfer and methods of vaccinating subjects by administering a target antigen operably linked to the AAV capsid polypeptides.


Joyce N.C.,Schepens Eye Research Institute
Experimental Eye Research | Year: 2012

The corneal endothelial monolayer helps maintain corneal transparency through its barrier and ionic "pump" functions. This transparency function can become compromised, resulting in a critical loss in endothelial cell density (ECD), corneal edema, bullous keratopathy, and loss of visual acuity. Although penetrating keratoplasty and various forms of endothelial keratoplasty are capable of restoring corneal clarity, they can also have complications requiring re-grafting or other treatments. With the increasing worldwide shortage of donor corneas to be used for keratoplasty, there is a greater need to find new therapies to restore corneal clarity that is lost due to endothelial dysfunction. As a result, researchers have been exploring alternative approaches that could result in the invivo induction of transient corneal endothelial cell division or the invitro expansion of healthy endothelial cells for corneal bioengineering as treatments to increase ECD and restore visual acuity. This review presents current information regarding the ability of human corneal endothelial cells (HCEC) to divide as a basis for the development of new therapies. Information will be presented on the positive and negative regulation of the cell cycle as background for the studies to be discussed. Results of studies exploring the proliferative capacity of HCEC will be presented and specific conditions that affect the ability of HCEC to divide will be discussed. Methods that have been tested to induce transient proliferation of HCEC will also be presented. This review will discuss the effect of donor age and endothelial topography on relative proliferative capacity of HCEC, as well as explore the role of nuclear oxidative DNA damage in decreasing the relative proliferative capacity of HCEC. Finally, potential new research directions will be discussed that could take advantage of and/or improve the proliferative capacity of these physiologically important cells in order to develop new treatments to restore corneal clarity. © 2011 Elsevier Ltd.


Patent
Schepens Eye Research Institute | Date: 2016-03-29

Described herein are materials and methods of treating dry eye disease in a subject.


Patent
The Regents Of The University Of California and Schepens Eye Research Institute | Date: 2016-04-06

The present invention provides a pharmaceutical composition, and methods of use thereof, for treating ocular boundary deficiency, symptoms associated therewith, or an undesired condition that is associated with or causes ocular boundary deficiency at the ocular surface. The pharmaceutical composition of the present invention comprises a human PRG4 protein, a lubricant fragment, homolog, or isoform thereof, suspended in an ophthalmically acceptable balanced salt solution. The pharmaceutical composition of the present invention may also comprise one or more ophthalmically acceptable agents selected from the group consisting of an ophthalmically acceptable demulcent, excipient, astringent, vasoconstrictor, emollient, sodium hyaluronate, hyaluronic acid, and surface active phospholipids, in a pharmaceutically acceptable carrier for topical administration.


Patent
Schepens Eye Research Institute | Date: 2016-03-07

The invention comprises a composition with means to inhibit the function of the inflammatory cytokine IL-17 and methods for using this composition to treat IL-17-mediated ocular inflammatory disorders. The invention also discloses devices for delivering this composition to the eye.


Patent
Massachusetts Eye, Ear Infirmary and Schepens Eye Research Institute | Date: 2016-04-11

Methods are described for predicting ancestral sequences for viruses or portions thereof. Also described are predicted ancestral sequences for adeno-associated virus (AAV) capsid polypeptides. The disclosure also provides methods of gene transfer and methods of vaccinating subjects by administering a target antigen operably linked to the AAV capsid polypeptides.


Grant
Agency: Department of Health and Human Services | Branch: National Institutes of Health | Program: STTR | Phase: Phase I | Award Amount: 233.24K | Year: 2015

DESCRIPTION provided by applicant Preclinical evaluation of treatment strategies for retinal neurodegenerative diseases is highly dependent on mouse models Classical methods to assess the visual function of animals such as electroretinogram ERG which measures electrical responses in the retina do not address connections between the eye and brain or visual perception by the visual system This often raises concerns regarding the functional relevance of the therapeutic benefit Difficulty in assessing visual perception and related behavior in mice and rats largely due to their subtle visual behavior cues and the lack of adequate measuring devices presents a critical barrier to the application of mouse models for evaluating treatment efficacy of new drugs and for scaling up for behavior phenotyping to screen genetic vision defects Pupillary light reflex PLR and optokinetic reflex OKR tests are useful methods in clinics for assessing human visual responses and perception However such tests have been difficult to conduct in rodents because current rodent visual testing methods or devices either do not allow accurate quantitative assessment for PLR or OKR or use subjective measures to score visual responses To address these challenges we propose to advance the technology by designing an easy to use automated platform that employs an eye pupil tracking device equipped with a computer vision system chiefly the interactive tracking system for unambiguous objective scoring of visual responses Our proposed new device will allow real time quantitative and accurate assessment of rodent visual function including light responses visual acuity and contrast sensitivity The novelty of our system also lies in that it does not require complicated calibration procedures needed in commonly used human eye tracking Rather than precisely measuring the extent of eye turning or orientation we propose to detect the signature eye movement in accordance with the speed and direction of visual stimuli The system will be validated using normal wildtype mice and mouse models of retinal neurodegeneration known to develop visual behavior changes in the parameters mentioned above Although rodent eye tracking has been investigated before this proposed visual assessment system would be the first commercially viable product that uses an eye pupil tracking device to automatically assess visual perception in rodents The combined PLR and OKR tests and vastly simplified and automated quantification methods will also provide the first scalable behavior platform for phenotyping and drug discovery in the vision research area In the future this technology has the potential of being expanded to measure responses from various visual stimuli This may translate into broader applications for evaluating brain diseases that afflict the visual pathways This platform for mouse visual behavior assessment will therefore greatly facilitate drug discovery and development aimed at preventing and slowing vision loss or restoring sight helping to combat devastating blinding conditions such as age related macular degeneration AMD and glaucoma PUBLIC HEALTH RELEVANCE The objective of the current proposal is to design and develop an automated system for the measure of rodent mice and rats light response visual acuity and contrast sensitivity The system will apply human eye pupil tracking techniques for objective and unambiguous evaluation of light response and visual perception This platform will provide a powerful tool for phenotypic studies as well as for discovery of new drugs that can prevent or restore sight caused by blinding conditions such as age related macular degeneration and glaucoma

Loading Schepens Eye Research Institute collaborators
Loading Schepens Eye Research Institute collaborators