SCF Pharma

Canada

SCF Pharma

Canada

Time filter

Source Type

Morin C.,SCF Pharma | Fortin S.,SCF Pharma | Cantin A.M.,Université de Sherbrooke
Clinical and Experimental Allergy | Year: 2013

Background: Asthma is a chronic disease characterized by airways hyperresponsiveness, inflammation and airways remodelling involving reversible bronchial obstruction. Omega-3 fatty acids and their derivatives are known to reduce inflammation in several tissues including lung. Objectives: The effects of eicosapentaenoic acid monoacylglyceride (MAG-EPA), a newly synthesized EPA derivative, were determined on the resolution of lung inflammation and airway hyperresponsiveness in an in vivo model of allergic asthma. Methods: Ovalbumin (OVA)-sensitized guinea-pigs were treated or not with MAG-EPA administered per os. Isometric tension measurements, histological analyses, homogenate preparation for Western blot experiments or total RNA extraction for RT-PCR were performed to assess the effect of MAG-EPA treatments. Results: Mechanical tension measurements revealed that oral MAG-EPA treatments reduced methacholine (MCh)-induced bronchial hyperresponsiveness in OVA-sensitized guinea-pigs. Moreover, MAG-EPA treatments also decreased Ca2+ hypersensitivity of bronchial smooth muscle. Histological analyses and leucocyte counts in bronchoalveolar lavages revealed that oral MAG-EPA treatments led to less inflammatory cell recruitment in the lung of OVA-sensitized guinea-pigs when compared with lungs from control animals. Results also revealed a reduction in mucin production and MUC5AC expression level in OVA-sensitized animals treated with MAG-EPA. Following MAG-EPA treatments, the transcript levels of pro-inflammatory markers such as IL-5, eotaxin, IL-13 and IL-4 were markedly reduced. Moreover, per os MAG-EPA administrations reduced COX2 over-expression in OVA-sensitized animals. Conclusion and Clinical Relevance: We demonstrate that MAG-EPA reduces airway hyperresponsiveness and lung inflammation in OVA-sensitized animals, a finding consistent with a decrease in IL-4, IL-5, IL-13, COX-2 and MUC5AC expression levels in the lung. The present data suggest that MAG-EPA represents a new potential therapeutic strategy for resolving inflammation in allergic asthma. © 2013 John Wiley & Sons Ltd.


PubMed | SCF Pharma and University of Montréal
Type: | Journal: Prostaglandins, leukotrienes, and essential fatty acids | Year: 2016

The aim of this project was to investigate the impact of two dietary omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), alone or in combination, on infarct size. Adult, male Sprague-Dawley rats were fed for 14 days with different omega-3 diets. The animals were subjected to ischemia for 40min followed by reperfusion. Infarct size, Akt (protein kinase B) activation level, caspase-3 activity and mitochondrial permeability transition pore (mPTP) opening were measured. The results indicate that EPA or DHA alone significantly reduced infarct size compared to the other diets. Akt activity was increased in the group fed EPA or DHA alone, whereas no significant activation was observed in the other groups compared to no omega-3 PUFA. DHA alone reduced caspase-3 activity and conferred resistance to mPTP opening. In conclusion, our results demonstrate that EPA and DHA are individually effective in diminishing infarct size in our experimental model while their combination is not.


Hiram R.,Université de Sherbrooke | Rizcallah E.,Université de Sherbrooke | Sirois C.,Université de Sherbrooke | Sirois M.,Université de Sherbrooke | And 3 more authors.
American Journal of Physiology - Heart and Circulatory Physiology | Year: 2014

Pulmonary hypertension (PH) is a rare and progressive disease characterized by an inflammatory status and vessel wall remodeling, resulting in increased pulmonary artery resistance. During the last decade, treatments have been proposed; most of them target the endothelial pathways that stimulate smooth muscle cell relaxation. However, PH remains associated with significant morbidity. We hypothesized that inflammation plays a crucial role in the severity of the abnormal vasoconstriction in PH. The goal of this study was to assess the effects of resolvin D1 (RvD1), a potent anti-inflammatory agent, on the pharmacological reactivity of human pulmonary arteries (HPAs) via an in vitro model of induced hyperreactivity. The effects of RvD1 and monoacylglyceride compounds were measured on contractile activity and Ca2+ sensitivity developed by HPAs that had been pretreated (or not) under proinflammatory conditions with either 10 ng/ml TNF-α or 10 ng/ml IL-6 or under hyperreactive conditions with 5 nM endothe-lin-1. The results demonstrated that, compared with controls, 24-h pretreatment with TNF-α, IL-6, or endothelin-1 increased reactivity and Ca2+ sensitivity of HPAs as revealed by agonist challenges with 80 μM KCl, 1 (μM serotonin (5-hydroxytryptamine), 30 nM U-46619, and 1 (αM phorbol 12,13-dibutyrate. However, 300 nM RvD1 as well as 1 (μM monoacylglyceride-docosapentaenoic acid monoglyceride strongly reversed the overresponsiveness induced by both proinflammatory and hyperreactive treatments. In pretreated pulmonary artery smooth muscle cells, Western blot analyses revealed that RvD1 treatment decreased the phosphorylation level of CPI-17 and expression of transmembrane protein member 16A while increasing the detection of G protein-coupled receptor 32. The present data demonstrate that RvD1, a trihydroxylated docosahexaenoic acid derivative, decreases induced overreactivity in HPAs via a reduction in CPI-17 phosphorylation and transmembrane protein member 16A expression. © 2014 the American Physiological Society.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Blier P.U.,University of Quebec at Rimouski | Fortin S.,SCF Pharma | Fortin S.,University of Quebec at Rimouski
Arthritis Research and Therapy | Year: 2015

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of the joints and bones. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines and eicosanoids involved in RA pathogenesis. The aim of this study was to determine the therapeutic potential of ω3 monoglyceride (MAG-ω3) compounds in an in vivo rat model of RA induced by Complete Freund's Adjuvant (CFA). Method: CFA rats were untreated or treated per os with three specific compounds, namely, MAG-docosahexaenoic acid (MAG-DHA), MAG-eicosapentaenoic acid (MAG-EPA) and MAG-docosapentaenoic acid (MAG-DPA). Morphological and histological analyses, as well as pro-inflammatory marker levels were determined following MAG-ω3 treatments. Results: Morphological and histological analyses revealed that MAG-EPA and MAG-DPA exhibited strong activity in reducing the progression and severity of arthritic disease in CFA rats. Following MAG-EPA and MAG-DPA treatments, plasma levels of the pro-inflammatory cytokines; interleukin 17A (IL-17A), IL-1β, IL-6 and tumor necrosis factor aα (TNFaα) were markedly lower when compared to CFA-untreated rats. Results also revealed a decreased activation of p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappa B (NFΚB) pathways correlated with a reduced expression of TNFaα, cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP-2) and MMP-9 in paw homogenates derived from MAG-EPA and MAG-DPA-treated rats. Of interest, the combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in CFA rats. Conclusion: Altogether, the present data suggest that MAG-EPA, without vitamin E, represents a new potential therapeutic strategy for resolving inflammation in arthritis. © 2015 Morin et al.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Rousseau E.,Université de Sherbrooke | Fortin S.,SCF Pharma
Prostaglandins Leukotrienes and Essential Fatty Acids | Year: 2013

N-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to inhibit the induction and progression of many tumor types. However, the anticancer effect of n-3 PUFA monoglyceride on colorectal cancer has yet to be assessed. The aim of the present study was to determine the anti-tumorigenic effects of docosahexaenoic acid monoglyceride (MAG-DHA), eicosapentaenoic acid monoglyceride (MAG-EPA) and docosapentaenoic acid (22:5. n-3) monoglyceride (MAG-DPA) in colorectal carcinoma cells. Our results demonstrate that MAG-DHA, MAG-EPA and MAG-DPA all decreased cell proliferation and induced apoptosis in HCT116 cells, with MAG-DPA having the higher anti-proliferative and pro-apoptotic effects in vitro. In a HCT116 xenograft mouse model, oral administration of MAG-DPA significantly inhibited tumor growth. Furthermore, MAG-DPA treatments decreased NFκB activation leading to a reduction in Bcl-2, CyclinD1, c-myc, COX-2, MMP9 and VEGF expression levels in tumor tissue sections. Altogether, these data provide new evidence regarding the mode of action of MAG-DPA in colorectal cancer cells. © 2013 Elsevier Ltd.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Blier P.U.,University of Quebec at Rimouski | Fortin S.,SCF Pharma | Fortin S.,University of Quebec at Rimouski
American Journal of Physiology - Gastrointestinal and Liver Physiology | Year: 2016

Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats. © 2016 the American Physiological Society.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Hiram R.,Université de Sherbrooke | Rousseau E.,Université de Sherbrooke | And 3 more authors.
American Journal of Physiology - Heart and Circulatory Physiology | Year: 2014

n-3 Polyunsaturated fatty acids (n-3 PUFA) have been shown to reduce inflammation and proliferation of pulmonary artery smooth muscle cells under pathophysiological conditions. However, the anti-inflammatory effect of the newly synthesized docosapentaenoic acid monoacylglyceride (MAG-DPA) on key signaling pathways in pulmonary hypertension (PH) pathogenesis has yet to be assessed. The aim of the present study was to determine the effects of MAG-DPA on pulmonary inflammation and remodeling occurring in a rat model of PH, induced by a single injection of monocrotaline (MCT: 60 mg/kg). Our results demonstrate that MAG-DPA treatment for 3 wk following MCT injection resulted in a significant improvement of right ventricular hypertrophy (RVH) and a reduction in Fulton's Index (FI). Morphometric analyses revealed that the wall thickness of pulmonary arterioles was significantly lower in MCT + MAG-DPA-treated rats compared with controls. This result was further correlated with a decrease in Ki-67 immunostaining. Following MAG-DPA treatments, lipid analysis showed a consistent increase in DPA together with lower levels of arachidonic acid (AA), as measured in blood and tissue samples. Furthermore, in MCT-treated rats, oral administration of MAG-DPA decreased NF-κB and p38 MAPK activation, leading to a reduction in MMP-2, MMP-9, and VEGF expression levels in lung tissue homogenates. Altogether, these data provide new evidence regarding the mode of action of MAG-DPA in the prevention of pulmonary hypertension induced by MCT. © 2014 the American Physiological Society.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Fortin S.,SCF Pharma | Cantin A.M.,Université de Sherbrooke | And 4 more authors.
Recent Patents on Anti-Cancer Drug Discovery | Year: 2013

Lung cancer is the leading cause of cancer-related deaths worldwide. Despite advances in research, diagnosis and treatment, lung cancer remains a highly lethal disease, often diagnosed at advanced stages and with a very poor prognosis. Therefore, new strategies for the prevention and treatment of lung cancer are urgently needed. The aim of the present study was to determine the anti-tumorigenic effects of docosahexaenoic acid monoacylglyceride (MAG-DHA), a newly patented DHA derivative in lung adenocarcinoma. Our results demonstrate that MAG-DHA treatments decreased cell proliferation and induced apoptosis in A549 human lung carcinoma cells whereas MAG-DHA treatment did not induce apoptosis of normal bronchial epithelial BEAS-2B cells. MAG-DHA decreased NFκB activation leading to a reduction in COX-2 expression level in both A549 cells and lung adenocarcinoma tissues. Furthermore, MAG-DHA treatment increased PTEN expression and activation concomitant with a decrease in AKT phosphorylation levels and enhanced apoptosis. Oral administration of MAG-DHA significantly reduced tumor growth in a mouse A549 xenograft model. Lastly, MAG-DHA markedly decreased COX-2 and enhanced PTEN protein expression in tumor tissue sections. Altogether, these data provide new evidence regarding the mode of action of MAG-DHA and strongly suggest that this compound could be of clinical interest in cancer treatment. © 2013 Bentham Science Publishers.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Fortin S.,SCF Pharma | Rousseau E.,Université de Sherbrooke
American Journal of Hypertension | Year: 2012

Background Pulmonary artery vasoconstriction and vascular remodeling contribute to a sustained elevation of pulmonary vascular resistance and pressure in patients with pulmonary arterial hypertension (PH), an often fatal hemodynamic disease. The effect of docosahexaenoic acid monoacylglyceride (MAG-DHA) and the role of the 17 kDa protein kinase C-potentiated inhibitor protein (CPI-17) were determined on vasoconstriction and smooth muscle cell proliferation of human pulmonary arteries (HPA).MethodsHPA were obtained from 16 patients undergoing lung resection for carcinoma. The mechanical tension and Ca 2+ sensitivity were measured on arterial rings treated with endothelin-1 (ET-1) in the absence or presence of MAG-DHA. The effect of MAG-DHA on the level of proliferation of smooth muscle cells isolated from HPA was evaluated in order to determine the role of CPI-17 protein.Results MAG-DHA treatment decreased the reactivity and Ca 2+ sensitivity induced by ET-1 in HPA. MAG-DHA treatment also decreased the expression of vascular endothelial growth factor (VEGF) induced by ET-1. Moreover, both VEGF inhibitor and MAG-DHA treatments reduced Ca 2+ hypersensitivity induced by ET-1, which was associated to a reduction in CPI-17 and myosin-binding subunit of the myosin light chain phosphatase (MYPT-1) phosphorylation levels. Proliferation of ET-1-stimulated HPA smooth muscle cells (PASMc) was also decreased following CPI-17 small interfering RNA transfection and MAG-DHA treatments. Western blot analyses revealed that MAG-DHA treatment resulted in decreased phosphorylation levels of CPI-17 and extracellular signal-regulated kinases (ERK) in PASMc treated with ET-1.ConclusionsWe have demonstrated that VEGF interacts with CPI-17 signaling pathway resulting in an increase in Ca 2+ sensitivity and proliferation of PASMc, whereas MAG-DHA treatment reversed these effects. © 2012 American Journal of Hypertension, Ltd.


Morin C.,SCF Pharma | Morin C.,Université de Sherbrooke | Fortin S.,SCF Pharma | Rousseau E.,Université de Sherbrooke
American Journal of Physiology - Heart and Circulatory Physiology | Year: 2011

The aim of this study was to investigate the effect of docosahexaenoic acid monoacylglyceride (MAG-DHA) on human pulmonary arterial tone. Tension measurements on pulmonary arterial tissues demonstrated that MAG-DHA reduced U-46619-induced tone, which is highly sensitive to the H-1152 inhibitor. Results also showed that MAG-DHA treatments decreased RhoA activity levels, which in turn inactivated the Rhokinase pathway, leading to a reduction in U-46619-induced Ca2+ sensitivity of permeabilized pulmonary artery smooth muscle cells. According to the mechanical responses assessing U-46619-induced Ca2+ sensitivity in the absence or presence of 3 μM MAG-DHA, MAG-DHA plus 1 μM N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH, a cytochrome P-450 epoxygenase inhibitor) and 300 nM 19,20-epoxydocosapentaenoic acid (a cytochrome P-450 epoxygenase-dependent DHA metabolite), our data suggest that the MAG-DHA is metabolized in a bioactive epoxymetabolite. This epoxyeicosanoid in turn decreases active tone and Ca2+ sensitivity of smooth muscles cells through an inhibition of the Rho-kinase pathway. Together, these data provide primary evidence regarding the mode of action of MAG-DHA in human pulmonary arteries and suggest that this compound may be of pharmacological interest in patients with pulmonary hypertension to generate intracellular bioactive metabolites. © 2011 the American Physiological Society.

Loading SCF Pharma collaborators
Loading SCF Pharma collaborators