Entity

Time filter

Source Type


Radax R.,University of Vienna | Hoffmann F.,University of Bergen | Hoffmann F.,Max Planck Institute for Marine Microbiology | Rapp H.T.,University of Bergen | And 4 more authors.
Environmental Microbiology | Year: 2012

The association of archaea with marine sponges was first described 15 years ago and their role in the nitrification process in Mediterranean and tropical sponges has been suggested. Here we explore the occurrence and abundance of potential ammonia-oxidizing archaea (AOA) in four morphologically different cold-water sponges (Phakellia ventilabrum, Geodia barretti, Antho dichotoma and Tentorium semisuberites) from the sublittoral and upper bathyal zone [Correction added on 30 December 2011, after first online publication on 19 December 2011: The term 'mesopelagic zone' has been replaced.] of the Norwegian coast, and relate them to nitrification rates determined in laboratory incubations. Net nitrification rates, calculated from the sum of nitrite and nitrate release during 24h, were up to 1880nmol N cm -3 day -1; i.e. comparable with those measured in Mediterranean sponges. Furthermore, a high abundance of archaeal cells was determined by fluorescence in situ hybridizations (CARD-FISH) and quantitative PCR, targeting archaeal amoA genes (encoding the alpha subunit of ammonia monooxygenase). AmoA genes as well as amoA transcripts were either exclusively detectable from archaea or were orders of magnitudes higher in abundance than their bacterial counterparts. Phylogenetic analyses of AOA and bacterial nitrite oxidizers (genus Nitrospira) confirmed the presence of specific populations of nitrifying microorganisms in the sponge mesohyl, which either were affiliated with groups detected earlier in marine sponges or were typical inhabitants of cold- and deep-water environments. Estimated cell-specific nitrification rates for P.ventilabrum were 0.6 to 6fmol N archaeal cell -1 day -1, thus comparable with planktonic organisms. Our results identify AOA as the major drivers of nitrification in four cold-water sponges, and indicate that these archaea may be considered as a relevant factor in nitrogen cycling in ocean regions with high sponge biomass. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. Source


Alie A.,University Pierre and Marie Curie | Leclere L.,University Pierre and Marie Curie | Leclere L.,Sars International Center for Marine Molecular Biology | Jager M.,University Pierre and Marie Curie | And 5 more authors.
Developmental Biology | Year: 2011

Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny. © 2010 Elsevier Inc. Source


Church S.H.,Brown University | Ryan J.F.,Whitney Laboratory for Marine Biosciences | Ryan J.F.,Sars International Center for Marine Molecular Biology | Dunn C.W.,Brown University
Systematic Biology | Year: 2015

The Swofford-Olsen-Waddell-Hillis (SOWH) test evaluates statistical support for incongruent phylogenetic topologies. It is commonly applied to determine if the maximum likelihood tree in a phylogenetic analysis is significantly different than an alternative hypothesis. The SOWH test compares the observed difference in log-likelihood between two topologies to a null distribution of differences in log-likelihood generated by parametric resampling. The test is a well-established phylogenetic method for topology testing, but it is sensitive to model misspecification, it is computationally burdensome to perform, and its implementation requires the investigator to make several decisions that each have the potential to affect the outcome of the test. We analyzed the effects of multiple factors using seven data sets to which the SOWH test was previously applied. These factors include a number of sample replicates, likelihood software, the introduction of gaps to simulated data, the use of distinct models of evolution for data simulation and likelihood inference, and a suggested test correction wherein an unresolved "zero-constrained" tree is used to simulate sequence data. To facilitate these analyses and future applications of the SOWH test, we wrote SOWHAT, a program that automates the SOWH test. We find that inadequate bootstrap sampling can change the outcome of the SOWH test. The results also show that using a zero-constrained tree for data simulation can result in a wider null distribution and higher p-values, but does not change the outcome of the SOWH test for most of the data sets tested here. These results will help others implement and evaluate the SOWH test and allow us to provide recommendations for future applications of the SOWH test. SOWHAT is available for download from https://github.com/josephryan/SOWHAT. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. Source


Hejnol A.,Sars International Center for Marine Molecular Biology
International Journal of Developmental Biology | Year: 2011

The Saint-Petersburg Society of Naturalists awarded the 2009 "Alexander Kowalevsky Medal" to Mark Q. Martindale, Professor of Organismal Biology at the University of Hawaii and Director of the Kewalo Marine Laboratory, Honolulu. This international award inaugurated first in 1910 was re-established only in 2001. In memory of Alexander Onufrievich Kowalevsky, it is awarded to outstanding zoologists and embryologists who have made great contributions to the field of embryology and developmental biology from an evolutionary perspective. Mark Q. Martindale has worked on a wide range of animals, mostly marine species, in contrast to many evo-devo researchers who often use a single "well-established" model organism. His work demonstrates how the insights gained by studying less "popular" animal taxa not only complement, but also significantly enrich our knowledge of the evolution of metazoan body plans and of the events that have led to the current animal diversity. © 2011 UBC Press. Source


Hejnol A.,Sars International Center for Marine Molecular Biology
Integrative and Comparative Biology | Year: 2010

Synopsis Recent progress in reconstructing animal relationships enables us to draw a better picture of the evolution of important characters such as organ systems and developmental processes. By mapping these characters onto the phylo-genetic framework, we can detect changes that have occurred in them during evolution. The spiral mode of development is a complex of characters that is present in many lineages, such as nemerteans, annelids, mollusks, and polyclad platyhelminthes. However, some of these lineages show variations of this general program in which sub-characters are modified without changing the overlying pattern. Recent molecular phylogenies suggest that spiral cleavage was lost, or at least has deviated from its original pattern, in more lineages than was previously thought (e.g., in rotifers, gastrotrichs, bryozoans, brachiopods, and phoronids). Here, I summarize recent progress in reconstructing the spiralian tree of life and discuss its significance for our understanding of the spiral-cleavage character complex. I conclude that more detailed knowledge of the development of spiralian taxa is necessary to understand the mechanisms behind these changes, and to understand the evolutionary changes and adaptations of spiralian embryos. © The Author 2010. Source

Discover hidden collaborations