Santa Barbara, CA, United States
Santa Barbara, CA, United States

Time filter

Source Type

The widespread New World species Olibroporus punctatus Casey, 1890 is diagnosed and illustrated using light microscopy and scanning electron microscopy, and its geographic distribution is mapped. Olibroporus grouvellei (Guillebeau, 1894) (originally in Parasemus Guillebeau) is considered a new junior synonym of O. punctatus. Based on further examination of specimens from the Neotropics, Pycinus Guillebeau, 1893 is reevaluated to be a new junior synonym of Olibroporus Casey, resulting in 12 new combinations. Novel structures imaged using SEM are discussed, and a general discussion of rampant genus-level synonymy in the Phalacridae follows.


Newsome S.D.,University of Wyoming | Newsome S.D.,Carnegie Institution of Washington | Collins P.W.,Santa Barbara Museum of Natural History | Rick T.C.,Smithsonian Institution | And 3 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

Studies of current interactions among species, their prey, and environmental factors are essential for mitigating immediate threats to population viability, but the true range of behavioral and ecological flexibility can be determined only through research on deeper timescales. Ecological data spanning centuries to millennia provide important contextual information for long-term management strategies, especially for species that noware living in relict populations.Here we use a variety of methods to reconstruct bald eagle diets and local abundance of their potential prey on the Channel Islands from the late Pleistocene to the time when the last breeding pairs disappeared from the islands in themid-20th century. Faunal andisotopic analysis of bald eagles shows that seabirds were important prey for immature/adult eagles for millennia before the eagles' local extirpation. In historic times (A.D. 1850-1950), however, isotopic and faunal data show that breeding bald eagles provisioned their chicks with introduced ungulates (e.g., sheep), which were locally present in high densities. Today, bald eagles are the focus of an extensive conservation program designed to restore a stable breeding population to the Channel Islands, but native and nonnative prey sources that were important for bald eagles in the past are either diminished (e.g., seabirds) or have been eradicated (e.g., introduced ungulates). In the absence of sufficient resources, a growing bald eagle population on the Channel Islands could expand its prey base to include carrion from local pinniped colonies, exert predation pressure on a recovering seabird population, and possibly prey on endangered island foxes.


Rick T.C.,Smithsonian Institution | Culleton B.J.,University of Oregon | Smith C.B.,University of Oregon | Johnson J.R.,Santa Barbara Museum of Natural History | Kennett D.J.,University of Oregon
Journal of Archaeological Science | Year: 2011

Stable carbon (δ13C) and nitrogen (δ15N) isotope analyses of dog (Canis familiaris), island fox (Urocyon littoralis), and human bone collagen from CA-SRI-2 (AD 130-1830) on Santa Rosa Island, California provide a proxy of diet and the relationships between humans and these animals. Carbon isotopic signatures indicate that Native Americans and their dogs at CA-SRI-2 subsisted almost exclusively on marine resources, while the island fox ate primarily terrestrial foods. Nitrogen isotopes and archaeofaunal remains indicate that humans and dogs also ate higher trophic level foods, including finfishes, marine mammals, and seabirds with smaller amounts of shellfish. The CA-SRI-2 island foxes appear to have eaten higher amounts of terrestrial foods, similar to the diets observed in modern fox populations. These data generally confirm the commensal relationship assumed to exist between domesticated dogs and people, but the carbon isotopic composition of dogs is enriched ∼2‰ compared to humans. We hypothesize that the difference in carbon isotopes between dogs and humans may have resulted from a higher consumption of C3 plants with lower δ13C values by humans, or less likely from the ingestion by dogs of significant amounts of bone collagen, which is enriched by ∼4‰ over associated muscle. © 2011.


Caterino M.S.,Santa Barbara Museum of Natural History | Tishechkin A.K.,Louisiana State University
ZooKeys | Year: 2013

Here we present a complete revision of the species of Baconia. Up until now there have been 27 species assigned to the genus (Mazur 2011), in two subgenera (Binhister Cooman and Baconia s. str.), with species in the Neotropical, Nearctic, Palaearctic, and Oriental regions. We recognize all these species as valid and correctly assigned to the genus, and redescribe all of them. We synonymize Binhister, previously used for a polyphyletic assemblage of species with varied relationships in the genus. We move four species into Baconia from other genera, and describe 85 species as new, bringing the total for the genus to 116 species. We divide these into 12 informal species groups, leaving 13 species unplaced to group. We present keys and diagnoses for all species, as well as habitus photos and illustrations of male genitalia for nearly all. Te genus now contains the following species and species groups: Baconia loricata group [B. loricata Lewis, 1885, B. patula Lewis, 1885, B. gounellei (Marseul, 1887a), B. jubaris (Lewis, 1901), B. festiva (Lewis, 1891), B. foliosoma sp. n., B. sapphirina sp. n., B. furtiva sp. n., B. pernix sp. n., B. applanatis sp. n., B. disciformis sp. n., B. nebulosa sp. n., B. brunnea sp. n.], B. godmani group [B. godmani (Lewis, 1888), B. venusta (J. E. LeConte, 1845), B. riehli (Marseul, 1862), comb. n., B. scintillans sp. n., B. isthmia sp. n., B. rossi sp. n., B. navarretei sp. n., B. maculata sp. n., B. deliberata sp. n., B. excelsa sp. n., B. violacea (Marseul, 1853), B. varicolor (Marseul, 1887b), B. dives (Marseul, 1862), B. eximia (Lewis, 1888), B. splendida sp. n., B. jacinta sp. n., B. prasina sp. n., B. opulenta sp. n., B. illustris (Lewis, 1900), B. cho-aspites (Lewis, 1901), B. lewisi Mazur, 1984], B. salobrus group [B. salobrus (Marseul, 1887b), B. turgifrons sp. n., B. crassa sp. n., B. anthracina sp. n., B. emarginata sp. n., B. obsoleta sp. n.], B. rufcauda group [B. rufcauda sp. n., B. repens sp. n.], B. angusta group [B. angusta Schmidt, 1893a, B. incognita sp. n., B. guartela sp. n., B. bullifrons sp. n., B. cavei sp. n., B. subtilis sp. n., B. dentipes sp. n., B. rubripennis sp. n., B. lunatifrons sp. n.], B. aeneomicans group [B. aeneomicans (Horn, 1873), B. pulchella sp. n., B. quercea sp. n., B. stephani sp. n., B. irinae sp. n., B. fornix sp. n., B. slipinskii Mazur, 1981, B. submetallica sp. n., B. diminua sp. n., B. rufescens sp. n., B. punctiventer sp. n., B. aulaea sp. n., B. mustax sp. n., B. plebeia sp. n., B. castanea sp. n., B. lescheni sp. n., B. oblonga sp. n., B. animata sp. n., B. teredina sp. n., B. chujoi (Cooman, 1941), B. barbarus (Cooman, 1934), B. reposita sp. n., B. kubani sp. n., B. wallacea sp. n., B. bigemina sp. n., B. adebratti sp. n., B. silvestris sp. n.], B. cylindrica group [B. cylindrica sp. n., B. chatzimanolisi sp. n.], B. gibbifer group [B. gibbifer sp. n., B. piluliformis sp. n., B. maquipucunae sp. n., B. tenuipes sp. n., B. tuberculifer sp. n., B. globosa sp. n.], B. insolita group [B. insolita (Schmidt, 1893a), comb. n., B. burmeisteri (Marseul, 1870), B. tricolor sp. n., B. pilicauda sp. n.], B. riouka group [B. riouka (Marseul, 1861), B. azuripennis sp. n.], B. famelica group [B. famelica sp. n., B. grossii sp. n., B. redemptor sp. n., B. fortis sp. n., B. longipes sp. n., B. katieae sp. n., B. cavifrons (Lewis, 1893), comb. n., B. haete-rioides sp. n.], B. micans group [B. micans (Schmidt, 1889a), B. carinifrons sp. n., B. fulgida (Schmidt, 1889c)], Baconia incertae sedis [B. chilense (Redtenbacher, 1867), B. glauca (Marseul, 1884), B. coerulea (Bickhardt, 1917), B. angulifrons sp. n., B. sanguinea sp. n., B. viridimicans (Schmidt, 1893b), B. nayarita sp. n., B. viridis sp. n., B. purpurata sp. n., B. aenea sp. n., B. clemens sp. n., B. leivasi sp. n., B. atricolor sp. n.]. We designate lectotypes for the following species: Baconia loricata Lewis, 1885, Phelister gounellei Marseul, 1887, Baconia jubaris Lewis, 1901, Baconia festiva Lewis, 1891, Platysoma venustum J.E. Le-Conte, 1845, Phelister riehli Marseul, 1862, Phelister violaceus Marseul, 1853, Phelister varicolor Marseul, 1887b, Phelister illustris Lewis, 1900, Baconia choaspites Lewis, 1901, Epierus festivus Lewis, 1898, Phelister salobrus Marseul, 1887, Baconia angusta Schmidt, 1893a, Phelister insolitus Schmidt, 1893a, Pachycraerus burmeisteri Marseul, 1870, Phelister riouka Marseul, 1861, Homalopygus cavifrons Lewis, 1893, Phelister micans Schmidt, 1889a, Phelister coeruleus Bickhardt, 1917, and Phelister viridimicans Schmidt, 1893b. We designate neotypes for Baconia patula Lewis, 1885 and Hister aeneomicans Horn, 1873, whose type specimens are lost. © M.S. Caterino, A.K. Tishechkin.


Polihronakis M.,Santa Barbara Museum of Natural History | Caterino M.S.,Santa Barbara Museum of Natural History
BMC Evolutionary Biology | Year: 2010

Background. Comparative phylogeography of sympatric sibling species provides an opportunity to isolate the effects of geography and demographics on the evolutionary history of two lineages over the same, known time scale. In the current study, we investigated the phylogeographic structure of two zopherid beetle species, Phloeodes diabolicus and P. plicatus, where their ranges overlap in California's Transverse Ranges. Results. Although P. diabolicus and P. plicatus share similar habitats with largely overlapping distributions, the results of this study revealed different evolutionary histories for each species since divergence from their most recent common ancestor. In general, P. plicatus had higher genetic diversity, and more among population isolation than P. diabolicus. The mismatch distributions indicated that one major difference between the two species was the timing of population expansion. This result was consistent with genetic patterns revealed by the stvalues and genetic diversity. Lastly, there were no parallel genetic breaks at similar geographic barriers between the species. Conclusions. Our data revealed that differential demographics rather than geography were responsible for the genetic patterns of the two species. © 2010 Polihronakis and Caterino; licensee BioMed Central Ltd.


Polihronakis M.,Santa Barbara Museum of Natural History | Caterino M.S.,Santa Barbara Museum of Natural History
Biological Journal of the Linnean Society | Year: 2010

The California Floristic Province (CFP) is considered a global biodiversity hotspot because of its confluence of high species diversity across a wide range of threatened habitats. To understand how biodiversity hotspots such as the CFP maintain and generate diversity, we conducted a phylogeographic analysis of the flightless darkling beetle, Nyctoporis carinata, using multiple genetic markers. Analyses of both nuclear and mitochondrial loci revealed an east-west genetic break through the Transverse Ranges and high genetic diversity and isolation of the southern Sierra Nevada Mountains. Overall, the results obtained suggest that this species has a deep evolutionary history whose current distribution resulted from migration out of a glacial refugium in the southern Sierra Nevada via the Transverse Ranges. This finding is discussed in light of similar genetic patterns found in other taxa to develop a foundation for understanding the biodiversity patterns of this dynamic area. © 2010 The Linnean Society of London.


Caterino M.S.,Santa Barbara Museum of Natural History
ZooKeys | Year: 2013

We revise the large Neotropical genus Operclipygus Marseul, in the histerid tribe Exosternini (Histeridae: Histerinae). We synonymize 3 species, move 14 species from other genera, sink the genus Tribalister Horn into Operclipygus, and describe 138 species as new, bringing the total to 177 species of Operclipygus. Keys are provided for the identification of all species, and the majority of the species are illustrated by habitus and male genitalia illustrations. The species are diverse throughout tropical South and Central America, with only a few species extending into the temperate parts of North America. The majority of species can be recognized by the presence of a distinct stria or sulcus along the apical margin of the pygidium, though it is not exclusive to the genus. Natural history details for species of Operclipygus are scant, as most specimens have been collected through the use of passive flight interception traps. Many are probably generally associated with decaying vegetation and leaf litter, where they prey on small arthropods. But a small proportion are known inquilines, with social insects such as ants and termites, and also with some burrowing mammals, such as Ctenomys lainville. The genus now includes the following species groups and species: Operclipygus sulcistrius group [O. lucanoides sp. n., O. schmidti sp. n., O. simplistrius sp. n., O. sulcistrius Marseul, 1870], O. mirabilis group [O. mirabilis (Wenzel & Dybas, 1941) comb. n., O. pustulifer sp. n., O. plaumanni sp. n., O. sinuatus sp. n., O. mutuca sp. n., O. carinistrius (Lewis, 1908) comb. n., O. parensis sp. n., O. schlingeri sp. n.], O. kerga group O. kerga (Marseul, 1870), O. planifrons sp. n., O. punctistrius sp. n.], O. conquisitus group [O. bicolor sp. n., O. conquisitus (Lewis, 1902), O. friburgius (Marseul, 1864)], O. impuncticollis group [O. bickhardti sp. n., O. britannicus sp. n., O. impuncticollis (Hinton, 1935)], O. panamensis group [O. crenatus (Lewis, 1888), O. panamensis (Wenzel & Dybas, 1941)], O. sejunctus group [O. depressus (Hinton, 1935), O. itoupe sp. n., O. juninensis sp. n., O. pecki sp. n., O. punctiventer sp. n., O. sejunctus (Schmidt, 1896) comb. n., O. setiventris sp. n.], O. mortavis group [O. ecitonis sp. n., O. mortavis sp. n., O. paraguensis sp. n.], O. dytiscoides group [O. carinisternus sp. n., O. crenulatus sp. n., O. dytiscoides sp. n., O. quadratus sp. n.], O. dubitabilis group [O. dubitabilis (Marseul, 1889), O. yasuni sp. n.], O. angulifer group [O. angulifer sp. n., O. impressifrons sp. n.], O. dubius group [O. andinus sp. n., O. dubius (Lewis, 1888), O. extraneus sp. n., O. intermissus sp. n., O. lunulus sp. n., O. occultus sp. n., O. perplexus sp. n., O. remotus sp. n., O. validus sp. n., O. variabilis sp. n.], O. hospes group [O. assimilis sp. n., O. belemensis sp. n., O. bulbistoma sp. n., O. callifrons sp. n., O. colombicus sp. n., O. communis sp. n., O. confertus sp. n., O. confluens sp. n., O. curtistrius sp. n., O. diffluens sp. n., O. fusistrius sp. n., O. gratus sp. n., hospes (Lewis, 1902), O. ibiscus sp. n., O. ignifer sp. n., O. impositus sp. n., O. incisus sp. n., O. innocuus sp. n., O. inquilinus sp. n., O. minutus sp. n., O. novateutoniae sp. n., O. praecinctus sp. n., O. prominens sp. n., O. rileyi sp. n., O. subterraneus sp. n., O. tenuis sp. n., O. tiputinus sp. n.], O. farctus group [O. atlanticus sp. n., O. bidessois (Marseul, 1889), O. distinctus (Hinton, 1935), O. distractus (Schmidt, 1896) comb. n., O. farctissimus sp. n., O. farctus (Marseul, 1864), O. gilli sp. n., O. impressistrius sp. n., O. inflatus sp. n., O. latemarginatus (Bickhardt, 1920) comb. n., O. petrovi sp. n., O. plicatus (Hinton, 1935) comb. n., O. prolixus sp. n., O. punctifrons sp. n., O. proximus sp. n., O. subrufus sp. n.], O. hirsutipes group [O. guianensis sp. n., O. hirsutipes sp. n.], O. hamistrius group [O. arquus sp. n., O. campbelli sp. n., O. chiapensis sp. n., O. dybasi sp. n., O. geometricus (Casey, 1893) comb. n., O. hamistrius (Schmidt, 1893) comb. n., O. impressicollis sp. n., O. intersectus sp. n., O. montanus sp. n., O. nubosus sp. n., O. pichinchensis sp. n., O. propinquus sp. n., O. quinquestriatus sp. n., O. rubidus (Hinton, 1935) comb. n., O. rufescens sp. n., O. troglodytes sp. n.], O. plicicollis group [O. cephalicus sp. n., O. longidens sp. n., O. plicicollis (Schmidt, 1893)], O. fossipygus group [O. disconnectus sp. n., O. fossipygus (Wenzel, 1944), O. foveipygus (Bickhardt, 1918), O. fungicolus (Wenzel & Dybas, 1941), O. gibbulus (Schmidt, 1889) comb. n., O. olivensis sp. n., O. simplicipygus sp. n., O. subdepressus (Schmidt, 1889), O. therondi (Wenzel, 1976)], O. impunctipennis group [O. chamelensis sp. n., O. foveiventris sp. n., O. granulipectus sp. n., O. impunctipennis (Hinton, 1935) comb. n., O. latifoveatus sp. n., O. lissipygus sp. n., O. maesi sp. n., O. mangiferus sp. n., O. marginipennis sp. n., O. nicodemus sp. n., O. nitidus sp. n., O. pacificus sp. n., O. pauperculus sp. n., O. punctissipygus sp. n., O. subviridis sp. n., O. tripartitus sp. n., O. vorax sp. n.], O. marginellus group [O. ashei sp. n., O. baylessae sp. n., O. dentatus sp. n., O. formicatus sp. n., O. hintoni sp. n., O. marginellus (J.E. LeConte, 1860) comb. n., O. orchidophilus sp. n., O. selvorum sp. n., O. striatellus (Fall, 1917) comb. n.], incertae sedis: O. teapensis (Marseul, 1853) comb. n., O. punctulatus sp. n., O. lama Mazur, 1988, O. florifaunensis sp. n., O. bosquesecus sp. n., O. arnaudi Dégallier, 1982, O. subsphaericus sp. n., O. latipygus sp. n., O. elongatus sp. n., O. rupicolus sp. n., O. punctipleurus sp. n., O. falini sp. n., O. peregrinus sp. n., O. brooksi sp. n., O. profundipygus sp. n., O. punctatissimus sp. n., O. cavisternus sp. n., O. siluriformis sp. n., O. parallelus sp. n., O. abbreviatus sp. n., O. pygidialis (Lewis, 1908), O. faltistrius sp. n., O. limonensis sp. n., O. wenzeli sp. n., O. iheringi (Bickhardt, 1917), O. angustisternus (Wenzel, 1944), O. shorti sp. n. We establish the following synonymies: Phelisteroides miladae Wenzel & Dybas, 1941 and Pseudister propygidialis Hinton, 1935e = O. crenatus (Lewis, 1888); Phelister subplicatus Schmidt, 1893b = O. bidessois (Marseul, 1889). We designate lectotypes for Operclipygus sulcistrius Marseul, 1870, Phelister carinistrius Lewis, 1908, Phelister kerga Marseul, 1870, Phelister friburgius Marseul, 1864, Phelister impuncticollis Hinton, 1935, Phelister crenatus Lewis, 1888, Phelister sejunctus Schmidt, 1896, Pseudister depressus Hinton, 1935, Epierus dubius Lewis, 1888, Phelister hospes Lewis, 1902, Phelister farctus Marseul, 1864, Phelister bidessois Marseul, 1889, Phelister subplicatus Schmidt, 1893, Phelister plicatus Hinton, 1935, Phelister distinctus Hinton, 1935, Phelister distractus Schmidt, 1896, Pseudister latemarginatus Bickhardt, 1920, Phelister hamistrius Schmidt, 1893, Phelister plicicollis Schmidt, 1893, Phelister gibbulus Schmidt, 1889, Phelister subdepressus Schmidt, 1889, Phelister teapensis Marseul, 1853, Phelister pygidialis Lewis, 1908, Phelister iheringi Bickhardt, 1917, and Phelister marginellus J.E. LeConte 1860. We designate a neotype for O. conquisitus Lewis, replacing its lost type specimen. © M.S. Caterino, A.K. Tishechkin.


Lindgren A.R.,University of California at Santa Barbara | Lindgren A.R.,Portland State University | Pankey M.S.,University of California at Santa Barbara | Hochberg F.G.,Santa Barbara Museum of Natural History | Oakley T.H.,University of California at Santa Barbara
BMC Evolutionary Biology | Year: 2012

Background: The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results: Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion: Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment. © 2012 Lindgren et al.; licensee BioMed Central Ltd.


Garfinkle E.A.R.,Santa Barbara Museum of Natural History
ZooKeys | Year: 2012

North American members in the genus Radiolucina are reviewed. A lectotype for the type species, Radiolucina amianta, is designated and descriptions and illustrations are provided. A description of a new species, Radiolucina jessicae, from the west coast of Mexico is presented. Key diagnostic species characteristics are outlined and compared among members of the genus. © Elizabeth A. R. Garfinkle.


Coan E.V.,Santa Barbara Museum of Natural History | Kabat A.R.,Harvard University
Malacologia | Year: 2012

The malacological works of Sylvanus Hanley (and his relative Charles Thorpe) are discussed and their dates in some cases clarified. The taxa that first appear in these works are listed, their type specimens noted when known, and the current status of the available taxa discussed. Of the 375 species-group names that first appear in these works, 367 are available, and 8 are nomina nude. Of the 367 available species-group taxa, approximately 219 are now considered valid. Approximately 60% of the available species are represented by type material, mainly in the Natural History Museum in London and in the Leeds City Museum in Leeds, U.K. Hanley also described several genus-group and family-group names, some of which are still considered valid.

Loading Santa Barbara Museum of Natural History collaborators
Loading Santa Barbara Museum of Natural History collaborators