La Jolla, CA, United States

The Sanford-Burnham Medical Research Institute, previously Burnham Institute for Medical Research, is a non-profit medical research institute with locations in La Jolla, California, Orlando, Florida, and Santa Barbara, California. There are more than 850 scientists at Sanford-Burnham; they work on the fundamental molecular causes of various diseases, with research including topics such as cancer, neuroscience, stem cell research, diabetes and obesity.Research at Sanford-Burnham is supported by funding from National Institutes of Health, National Cancer Institute, and Juvenile Diabetes Research Foundation among others, and partnerships with pharmaceutical companies such as Johnson & Johnson Pharmaceutical Research and Development. In 2008, Sanford-Burnham was awarded a $97.9 million grant by NIH to establish a high-throughput screening screening center. Wikipedia.

Time filter

Source Type

Sanford Burnham Institute for Medical Research | Date: 2015-03-05

Provided herein are small molecule Fatty Acid Synthase Inhibitors, compositions comprising the compounds, and methods of using the compounds and compositions comprising the compounds.

Sanford Burnham Institute for Medical Research | Date: 2016-11-29

Provided herein are compounds that modulate the activity of inhibitor of apoptosis proteins (IAPB), compositions comprising the compounds, and methods of using the compounds and compositions comprising the compounds.

Sanford Burnham Institute for Medical Research | Date: 2015-04-06

Provided herein are small molecule active metabotropic glutamate subtype-2 and -3 receptor positive allosteric modulators (PAMS), compositions comprising the compounds, and methods of using the compounds and compositions comprising the compounds.

Back S.H.,University of Ulsan | Kaufman R.J.,Sanford Burnham Institute for Medical Research
Annual Review of Biochemistry | Year: 2012

Given the functional importance of the endoplasmic reticulum (ER), an organelle that performs folding, modification, and trafficking of secretory and membrane proteins to the Golgi compartment, the maintenance of ER homeostasis in insulin-secreting β-cells is very important. When ER homeostasis is disrupted, the ER generates adaptive signaling pathways, called the unfolded protein response (UPR), to maintain homeostasis of this organelle. However, if homeostasis fails to be restored, the ER initiates death signaling pathways. New observations suggest that both chronic hyperglycemia and hyperlipidemia, known as important causative factors of type 2 diabetes (T2D), disrupt ER homeostasis to induce unresolvable UPR activation and β-cell death. This review examines how the UPR pathways, induced by high glucose and free fatty acids (FFAs), interact to disrupt ER function and cause β-cell dysfunction and death. © 2012 by Annual Reviews. All rights reserved.

Towler D.A.,Sanford Burnham Institute for Medical Research
Circulation Research | Year: 2013

Calcific aortic valve disease (CAVD) increasingly afflicts our aging population. One third of our elderly have echocardiographic or radiological evidence of calcific aortic valve sclerosis, an early and subclinical form of CAVD. Age, sex, tobacco use, hypercholesterolemia, hypertension, and type II diabetes mellitus all contribute to the risk of disease that has worldwide distribution. On progression to its most severe form, calcific aortic stenosis, CAVD becomes debilitating and devastating, and 2% of individuals >60 years are affected by calcific aortic stenosis to the extent that surgical intervention is required. No effective pharmacotherapies exist for treating those at risk for clinical progression. It is becoming increasingly apparent that a diverse spectrum of cellular and molecular mechanisms converge to regulate valvular calcium load; this is evidenced not only in histopathologic heterogeneity of CAVD, but also from the multiplicity of cell types that can participate in valve biomineralization. In this review, we highlight our current understanding of CAVD disease biology, emphasizing molecular and cellular aspects of its regulation. We end by pointing to important biological and clinical questions that must be answered to enable sophisticated disease staging and the development of new strategies to treat CAVD medically. © 2013 American Heart Association, Inc.

Kaufman R.J.,Sanford Burnham Institute for Medical Research
Blood | Year: 2013

Hemophilia is caused by a functional deficiency of one of the coagulation proteins. Therapy for no other group of genetic diseases has seen the progress that has been made for hemophilia over the past 40 years, from a life expectancy in 1970 of ∼20 years for a boy born with severe hemophilia to essentially a normal life expectancy in 2013 with current prophylaxis therapy. However, these therapies are expensive and require IV infusions 3 to 4 times each week. These are exciting times for hemophilia because several new technologies that promise extended half-lives for factor products, with potential for improvements in quality of life for persons with hemophilia, are in late-phase clinical development.

Cunningham T.J.,Sanford Burnham Institute for Medical Research | Duester G.,Sanford Burnham Institute for Medical Research
Nature Reviews Molecular Cell Biology | Year: 2015

Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis. © 2015 Macmillan Publishers Limited. All rights reserved.

Godzik A.,Sanford Burnham Institute for Medical Research
Current Opinion in Structural Biology | Year: 2011

Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. © 2011 Elsevier Ltd.

Wolf D.A.,Sanford Burnham Institute for Medical Research
Cancer Cell | Year: 2014

A series of recent reports has suggested PGC1α-driven upregulation of mitochondrial oxidative phosphorylation as a selective vulnerability of drug-resistant cancers. Accordingly, chemical inhibitors of respiration led to selective eradication of such cancer cells due to their preferential sensitivity to mitochondrial production of reactive oxygen species. These insights create a timely opportunity for a biomarker guided application of already existing and newly emerging mitochondrial inhibitors in recurrent drug-resistant cancer, including lymphomas, melanomas, and other malignant diseases marked by increased mitochondrial respiration. © 2014 Elsevier Inc.

Wang M.,Sanford Burnham Institute for Medical Research | Kaufman R.J.,Sanford Burnham Institute for Medical Research
Nature Reviews Cancer | Year: 2014

The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells for the storage and regulated release of calcium and as the entrance to the secretory pathway. Protein misfolding in the ER causes accumulation of misfolded proteins (ER stress) and activation of the unfolded protein response (UPR), which has evolved to maintain a productive ER protein-folding environment. Both ER stress and UPR activation are documented in many different human cancers. In this Review, we summarize the impact of ER stress and UPR activation on every aspect of cancer and discuss outstanding questions for which answers will pave the way for therapeutics. © 2014 Macmillan Publishers Limited.

Loading Sanford Burnham Institute for Medical Research collaborators
Loading Sanford Burnham Institute for Medical Research collaborators