Time filter

Source Type

Son H.,Gyeongsang National University | Jung S.,Gyeongsang National University | Kim J.Y.,Sancheong Oriental Medicinal Herb Institute | Goo Y.M.,Sancheong Oriental Medicinal Herb Institute | And 7 more authors.
Brain Research | Year: 2015

Glutamine synthetase (GS), an astrocytic protein in the brain, mediates the process by which glutamate (Glu) is transformed into glutamine (Gln) during Glu and gamma-aminobutyric acid (GABA) de novo synthesis. There are many types of neural complications related with those neurotransmitters in type 1 diabetes (T1D) patients, but there is little information about the change GS. Therefore, we examined changes in GS activity and expression, as well as the amount of Glu, Gln, and GABA in the brain of a T1D animal model. Using primary culture we found that glucose fluctuation caused glial fibrillary acidic protein (GFAP) and GS changes but constant high glucose level didn't. In T1D mouse, GS expression increased in the prefrontal cortex (PFC) and hippocampus (HI), but decreased GS activity was only observed in the HI whereas GFAP expression decreased in both regions. Gln increased in both regions, but Glu and GABA were only increased in the HI of T1D animals where GS activity decreased with higher reactive oxygen/nitrogen species. Collectively, low GS activity may be closely related with high levels of Glu and GABA in the HI of T1D brain, and this would result in abnormal neurotransmissions. © 2015 Elsevier B.V. All rights reserved. Source

Kim E.T.,Gyeongsang National University | Moon Y.H.,Gyeongsang National University | Moon Y.H.,Gyeongnam National University of Science and Technology | Min K.-S.,Gyeongsang National University | And 7 more authors.
Asian-Australasian Journal of Animal Sciences | Year: 2013

This study evaluated the in vitro effect of medicinal plant extracts on ruminal methanogenesis, four different groups of methanogens and ruminal fermentation characteristics. A fistulated Holstein cow was used as a donor of rumen fluid. Licorice and mugwort extracts (Glycyrrhiza uralensis and Artemisia capillaris, 0.5% and 1% of total substrate DM, respectively), previously used as folk remedies, were added to an in vitro fermentation incubated with buffered-rumen fluid. Total gas production in Glycyrrhiza uralensis extract treatment was not significantly different between treatments (p<0.05) while total gas production in the Artemisia capillaris extract treatment was lower than that of the control. Artemisia capillaris extract and Glycyrrhiza uralensis extract reduced CH4 emission by 14% (p<0.05) and 8% (p<0.05), respectively. Ciliate-associated methanogens population decreased by 18% in the medicinal plant extracts treatments. Medicinal plant extracts also affected the order Methanobacteriales community. Methanobacteriales diversity decreased by 35% in the Glycyrrhiza uralensis extract treatment and 30% in the Artemisia capillaris extract treatment. The order Methanomicrobiales population decreased by 50% in the 0.5% of Glycyrrhiza uralensis extract treatment. These findings demonstrate that medicinal plant extracts have the potential to inhibit in vitro ruminal methanogenesis. © 2013 by Asian-Australasian Journal of Animal Sciences. Source

Cho K.M.,Gyeongnam National University of Science and Technology | Ha T.J.,South Korean National Institute of Crop Science | Lee Y.B.,Gyeongsang National University | Seo W.D.,South Korean National Institute of Crop Science | And 5 more authors.
Journal of Functional Foods | Year: 2013

This research was the first to investigate nutritional components, including soluble phenolics (isoflavones and anthocyanins), protein, oil, and fatty acid as well as antioxidant activities in different coloured seed coat soybeans (yellow, black, brown, and green) for two crop years. The soluble phenolics differed significantly with cultivars, crop years, and seed coat colours, while protein, oil, and fatty acid exhibited only slight variations. Especially, malonylgenistin and cyanidin-3-O-glucoside compositions had the most remarkable variations. Green soybeans had the highest average isoflavone content (3079.42μg/g), followed by yellow (2393.41μg/g), and black soybeans (2373.97μg/g), with brown soybeans showing the lowest value (1821.82μg/g). Anthocyanins showed only in black soybeans, with the average contents of the primary anthocyanins, cyanidin-3-O-glucoside, delphinidine-3-O-glucoside, and petunidin-3-O-glucoside, quantified at 11.046, 1.971, and 0.557. mg/g, respectively. Additionally, Nogchae of green soybean and Geomjeongkong 2 of black soybean may be recommended as potential cultivars owing to the highest average isoflavone (4411.10μg/g) and anthocyanin (21.537. mg/g) contents. The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals also differed remarkably, depending upon isoflavone and anthocyanin contents, with black soybeans exhibiting the highest antioxidant effects. © 2013 Elsevier Ltd. Source

Kang Y.M.,Cornell University | Park D.J.,Gyeongsang National University | Min J.Y.,Sancheong Oriental Medicinal Herb Institute | Song H.J.,Gyeongsang National University | And 5 more authors.
In Vitro Cellular and Developmental Biology - Plant | Year: 2011

Scopolia parviflora adventitious roots were metabolically engineered by co-expression of the two gene putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H) cDNAs with the aid of Agrobacterium rhizogenes. The transformed roots developed into morphologically distinct S. parviflora PMT1 (SpPMT1), S. parviflora PMT1 (SpPMT2), and S. parviflora H6H (SpH6H) transgenic hairy root lines. Consequent to the introduction of these key enzyme genes, the production of the alkaloids hyoscyamine and scopolamine was enhanced. Among the transgenic hairy root lines, SpPMT2 line possessed the highest growth index. The treatment of transgenic hairy roots with growth regulators further enhanced the production of scopolamine. Thus, the results suggest that PMT1, PMT2, and H6H genes may not only be involved in the metabolic regulation of alkaloid production but also that these genes may play a role in the root development. © 2011 The Society for In Vitro Biology. Source

Goo Y.-M.,Sancheong Oriental Medicinal Herb Institute | Han E.-H.,Gyeongnam National University of Science and Technology | Jeong J.C.,Korea Research Institute of Bioscience and Biotechnology | Kwak S.-S.,Korea Research Institute of Bioscience and Biotechnology | And 4 more authors.
Comptes Rendus - Biologies | Year: 2015

In a previous study, we have evidenced that the overexpression of the IbOr gene isolated from sweet potato conferred a tolerance activity against salinity and methyl viologen (MV) treatment in transgenic sweet potato calli along with an enhanced carotenoid content. In this study, to further examine the function of the IbOr gene in heterologous organism, we transformed the IbOr gene into potato under the direction of SWPA2 promoter, a strong inducible promoter upon treatment with various environmental stresses. Consistently with ourprevious study of sweet potato calli, the level of total carotenoid was elevated up to 2.7-fold (38.1 μgg 1DW) compared to the non-transgenic control, Atlantic cultivar. However, the composition of carotenoid was not influenced by the overexpression of the IbOr gene since only pre-existing carotenoids in the non-transgenic control including violaxanthin, lutien and β-carotene were elevated at a similar level of total carotenoids. In general, the transcript levels for most of carotenogenesis-related genes were elevated in transgenic tuber, whereas they remained at similar levels in transgenic leaf tissues compared to those of non-transgenic controls. The increased levels of carotenoid content in the leaf or tuber tissue of transgenic lines were correlated with the enhanced tolerance activity against salt-or MV-mediated oxidative stresses and DPPH radical-scavenging activity. Our preliminary results suggest that further investigation is required for the development of a crop tolerant to salinity and other environmental stresses through the overexpression of the IbOr gene. © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Source

Discover hidden collaborations