Time filter

Source Type

Parsons X.H.,San Diego Regenerative Medicine Institute | Teng Y.D.,Harvard University | Parsons J.F.,San Diego Regenerative Medicine Institute | Snyder E.Y.,San Diego Regenerative Medicine Institute | And 3 more authors.
Journal of Visualized Experiments | Year: 2011

To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics. © 2011 Creative Commons Attribution License.


Parsons X.H.,San Diego Regenerative Medicine Institute
Journal of visualized experiments : JoVE | Year: 2011

To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.


Parsons X.H.,San Diego Regenerative Medicine Institute
Journal of visualized experiments : JoVE | Year: 2011

There is a large unfulfilled need for a clinically-suitable human neuronal cell source for repair or regeneration of the damaged central nervous system (CNS) structure and circuitry in today's healthcare industry. Cell-based therapies hold great promise to restore the lost nerve tissue and function for CNS disorders. However, cell therapies based on CNS-derived neural stem cells have encountered supply restriction and difficulty to use in the clinical setting due to their limited expansion ability in culture and failing plasticity after extensive passaging(1-3). Despite some beneficial outcomes, the CNS-derived human neural stem cells (hNSCs) appear to exert their therapeutic effects primarily by their non-neuronal progenies through producing trophic and neuroprotective molecules to rescue the endogenous cells(1-3). Alternatively, pluripotent human embryonic stem cells (hESCs) proffer cures for a wide range of neurological disorders by supplying the diversity of human neuronal cell types in the developing CNS for regeneration(1,4-7). However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity(7-10). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic(11-13). To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules(14) (please see a schematic in Fig. 1). Retinoic acid (RA) does not induce neuronal differentiation of undifferentiated hESCs maintained on feeders(1, 14). And unlike mouse ESCs, treating hESC-differentiated embryoid bodies (EBs) only slightly increases the low yield of neurons(1, 14, 15). However, after screening a variety of small molecules and growth factors, we found that such defined conditions rendered retinoic acid (RA) sufficient to induce the specification of neuroectoderm direct from pluripotent hESCs that further progressed to neuroblasts that generated human neuronal progenitors and neurons in the developing CNS with high efficiency (Fig. 2). We defined conditions for induction of neuroblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human neuronal cells across the spectrum of developmental stages for cell-based therapeutics.


Pluripotent human embryonic stem cells (hESCs) hold great potential for restoring tissue and organ function, which has been hindered by inefficiency and instability of generating desired cell types through multi-lineage differentiation. This instant invention is based on the discovery that pluripotent hESCs maintained under defined culture conditions can be uniformly converted into a specific lineage by small molecule induction. Retinoic acid induces specification of neuroectoderm direct from the pluripotent state of hESCs and triggers progression to neuronal progenitors and neurons efficiently. Similarly, nicotinamide induces specification of cardiomesoderm direct from the pluripotent state of hESCs and triggers progression to cardiac precursors and cardiomyocytes efficiently. This technology provides a large supply of clinically-suitable human neuronal or cardiac therapeutic products for CNS or myocardium repair. This invention enables well-controlled efficient induction of pluripotent hESCs exclusively to a specific clinically-relevant lineage for tissue and organ engineering and regeneration, cell-based therapy, and drug discovery.


Pluripotent human embryonic stem cells (hESCs) hold great potential for restoring tissue and organ function, which has been hindered by inefficiency and instability of generating desired cell types through multi-lineage differentiation. This instant invention is based on the discovery that pluripotent hESCs maintained under defined culture conditions can be uniformly converted into a specific lineage by small molecule induction. Retinoic acid induces specification of neuroectoderm direct from the pluripotent state of hESCs and triggers progression to neuronal progenitors and neurons efficiently. Similarly, nicotinamide induces specification of cardiomesoderm direct from the pluripotent state of hESCs and triggers progression to cardiac precursors and cardiomyocytes efficiently. This technology provides a large supply of clinically-suitable human neuronal or cardiac therapeutic products for CNS or myocardium repair. This invention enables well-controlled efficient induction of pluripotent hESCs exclusively to a specific clinically-relevant lineage for tissue and organ engineering and regeneration, cell-based therapy, and drug discovery.


Pluripotent human embryonic stem cells (hESCs) hold great potential for restoring tissue and organ function, which has been hindered by inefficiency and instability of generating desired cell types through multi-lineage differentiation. This instant invention is based on the discovery that pluripotent hESCs maintained under defined culture conditions can be uniformly converted into a specific lineage by small molecule induction. Retinoic acid induces specification of neuroectoderm direct from the pluripotent state of hESCs and triggers progression to neuronal progenitors and neurons efficiently. Similarly, nicotinamide induces specification of cardiomesoderm direct from the pluripotent state of hESCs and triggers progression to cardiac precursors and cardiomyocytes efficiently. This technology provides a large supply of clinically-suitable human neuronal or cardiac therapeutic products for CNS or myocardium repair. This invention enables well-controlled efficient induction of pluripotent hESCs exclusively to a specific clinically-relevant lineage for tissue and organ engineering and regeneration, cell-based therapy, and drug discovery.


PubMed | San Diego Regenerative Medicine Institute
Type: Journal Article | Journal: Journal of stem cell research & therapy | Year: 2013

Realizing the potential of human embryonic stem cells (hESCs) has been hindered by the inefficiency and instability of generating desired cell types from pluripotent cells through multi-lineage differentiation. We recently reported that pluripotent hESCs maintained under a defined platform can be uniformly converted into a cardiac or neural lineage by small molecule induction, which enables lineage-specific differentiation direct from the pluripotent state of hESCs and opens the door to investigate human embryonic development using in vitro cellular model systems. To identify mechanisms of small molecule induced lineage-specification of pluripotent hESCs, in this study, we compared the expression and intracellular distribution patterns of a set of cardinal chromatin modifiers in pluripotent hESCs, nicotinamide (NAM)-induced cardiomesodermal cells, and retinoic acid (RA)-induced neuroectodermal cells. Further, genome-scale profiling of microRNA (miRNA) differential expression patterns was used to monitor the regulatory networks of the entire genome and identify the development-initiating miRNAs in hESC cardiac and neural lineage-specification. We found that NAM induced nuclear translocation of NAD-dependent histone deacetylase SIRT1 and global chromatin silencing, while RA induced silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family to high levels. Genome-scale miRNA profiling indentified that a unique set of pluripotence-associated miRNAs was down-regulated, while novel sets of distinct cardiac- and neural-driving miRNAs were up-regulated upon the induction of lineage-specification direct from the pluripotent state of hESCs. These findings suggest that a predominant epigenetic mechanism via SIRT1-mediated global chromatin silencing governs NAM-induced hESC cardiac fate determination, while a predominant genetic mechanism via silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family governs RA-induced hESC neural fate determination. This study provides critical insight into the earliest events in human embryogenesis as well as offers means for small molecule-mediated direct control and modulation of hESC pluripotent fate when deriving clinically-relevant lineages for regenerative therapies.


PubMed | San Diego Regenerative Medicine Institute
Type: Journal Article | Journal: British biotechnology journal | Year: 2014

To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful


PubMed | San Diego Regenerative Medicine Institute
Type: | Journal: Methods in molecular biology (Clifton, N.J.) | Year: 2015

Developing novel strategies for well-controlled efficiently directing pluripotent human embryonic stem cells (hESCs) exclusively and uniformly towards clinically relevant cell types in a lineage-specific manner is not only crucial for unveiling the molecular and cellular cues that direct human embryogenesis but also vital to harnessing the power of hESC biology for tissue engineering and cell-based therapies. Conventional hESC differentiation methods require uncontrollable simultaneous multi-lineage differentiation of pluripotent cells, which yield embryoid bodies (EB) or aggregates consisting of a mixed population of cell types of three embryonic germ layers, among which only a very small fraction of cells display targeted differentiation, impractical for commercial and clinical applications. Here, a protocol for lineage-specific differentiation of hESCs, maintained under defined culture systems, direct from the pluripotent stage using small-molecule induction exclusively and uniformly to a neural or a cardiac lineage is described. Lineage-specific differentiation of pluripotent hESCs by small-molecule induction enables well-controlled highly efficient direct conversion of nonfunctional pluripotent hESCs into a large supply of high-purity functional human neuronal or cardiomyocyte cell therapy derivatives for commercial and therapeutic uses.


PubMed | San Diego Regenerative Medicine Institute
Type: Journal Article | Journal: Annual research & review in biology | Year: 2014

It has been recognized that pluripotent human embryonic stem cells (hESCs) must be transformed into fate-restricted derivatives before use for cell therapy. Realizing the therapeutic potential of pluripotent hESC derivatives demands a better understanding of how a pluripotent cell becomes progressively constrained in its fate options to the lineages of tissue or organ in need of repair. Discerning the intrinsic plasticity and regenerative potential of human stem cell populations reside in chromatin modifications that shape the respective epigenomes of their derivation routes. The broad potential of pluripotent hESCs is defined by an epigenome constituted of open conformation of chromatin mediated by a pattern of Oct-4 global distribution that corresponds genome-wide closely with those of active chroma tin modifications. Dynamic alterations in chromatin states correlate with loss-of-Oct4-associated hESC differentiation. The epigenomic transition from pluripotence to restriction in lineage choices is characterized by genome-wide increases in histone H3K9 methylation that mediates global chromatin-silencing and somatic identity. Human stem cell derivatives retain more open epigenomic landscape, therefore, more developmental potential for scale-up regeneration, when derived from the hESCs

Loading San Diego Regenerative Medicine Institute collaborators
Loading San Diego Regenerative Medicine Institute collaborators