Entity

Time filter

Source Type


Parsons X.H.,San Diego Regenerative Medicine Institute
Journal of visualized experiments : JoVE | Year: 2011

There is a large unfulfilled need for a clinically-suitable human neuronal cell source for repair or regeneration of the damaged central nervous system (CNS) structure and circuitry in today's healthcare industry. Cell-based therapies hold great promise to restore the lost nerve tissue and function for CNS disorders. However, cell therapies based on CNS-derived neural stem cells have encountered supply restriction and difficulty to use in the clinical setting due to their limited expansion ability in culture and failing plasticity after extensive passaging(1-3). Despite some beneficial outcomes, the CNS-derived human neural stem cells (hNSCs) appear to exert their therapeutic effects primarily by their non-neuronal progenies through producing trophic and neuroprotective molecules to rescue the endogenous cells(1-3). Alternatively, pluripotent human embryonic stem cells (hESCs) proffer cures for a wide range of neurological disorders by supplying the diversity of human neuronal cell types in the developing CNS for regeneration(1,4-7). However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity(7-10). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic(11-13). To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules(14) (please see a schematic in Fig. 1). Retinoic acid (RA) does not induce neuronal differentiation of undifferentiated hESCs maintained on feeders(1, 14). And unlike mouse ESCs, treating hESC-differentiated embryoid bodies (EBs) only slightly increases the low yield of neurons(1, 14, 15). However, after screening a variety of small molecules and growth factors, we found that such defined conditions rendered retinoic acid (RA) sufficient to induce the specification of neuroectoderm direct from pluripotent hESCs that further progressed to neuroblasts that generated human neuronal progenitors and neurons in the developing CNS with high efficiency (Fig. 2). We defined conditions for induction of neuroblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human neuronal cells across the spectrum of developmental stages for cell-based therapeutics. Source


Parsons X.H.,San Diego Regenerative Medicine Institute
Journal of visualized experiments : JoVE | Year: 2011

To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics. Source


Pluripotent human embryonic stem cells (hESCs) hold great potential for restoring tissue and organ function, which has been hindered by inefficiency and instability of generating desired cell types through multi-lineage differentiation. This instant invention is based on the discovery that pluripotent hESCs maintained under defined culture conditions can be uniformly converted into a specific lineage by small molecule induction. Retinoic acid induces specification of neuroectoderm direct from the pluripotent state of hESCs and triggers progression to neuronal progenitors and neurons efficiently. Similarly, nicotinamide induces specification of cardiomesoderm direct from the pluripotent state of hESCs and triggers progression to cardiac precursors and cardiomyocytes efficiently. This technology provides a large supply of clinically-suitable human neuronal or cardiac therapeutic products for CNS or myocardium repair. This invention enables well-controlled efficient induction of pluripotent hESCs exclusively to a specific clinically-relevant lineage for tissue and organ engineering and regeneration, cell-based therapy, and drug discovery.


Pluripotent human embryonic stem cells (hESCs) hold great potential for restoring tissue and organ function, which has been hindered by inefficiency and instability of generating desired cell types through multi-lineage differentiation. This instant invention is based on the discovery that pluripotent hESCs maintained under defined culture conditions can be uniformly converted into a specific lineage by small molecule induction. Retinoic acid induces specification of neuroectoderm direct from the pluripotent state of hESCs and triggers progression to neuronal progenitors and neurons efficiently. Similarly, nicotinamide induces specification of cardiomesoderm direct from the pluripotent state of hESCs and triggers progression to cardiac precursors and cardiomyocytes efficiently. This technology provides a large supply of clinically-suitable human neuronal or cardiac therapeutic products for CNS or myocardium repair. This invention enables well-controlled efficient induction of pluripotent hESCs exclusively to a specific clinically-relevant lineage for tissue and organ engineering and regeneration, cell-based therapy, and drug discovery.


Parsons X.H.,San Diego Regenerative Medicine Institute | Teng Y.D.,Harvard University | Parsons J.F.,San Diego Regenerative Medicine Institute | Snyder E.Y.,San Diego Regenerative Medicine Institute | And 3 more authors.
Journal of Visualized Experiments | Year: 2011

To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics. © 2011 Creative Commons Attribution License. Source

Discover hidden collaborations