Samil Pharmaceutical Co.

Anyang, South Korea

Samil Pharmaceutical Co.

Anyang, South Korea
SEARCH FILTERS
Time filter
Source Type

Cho K.H.,Yeungnam University | Cho K.H.,Samil Pharmaceutical Co. | Choi Y.K.,Yeungnam University | Kang J.H.,Yeungnam University | And 4 more authors.
International Journal of Pharmaceutics | Year: 2010

To develop a novel combination tablet which contained 100. mg trimebutine maleate and 5. mg mosapride citrate (TMCT) for the treatment of functional dyspepsia, the wet granulation method was used to prepare TMCTs with various amounts of diluents and stabilizers. The levels of impurities, the stability and the dissolution of the TMCTs were investigated. The oral bioavailability of drugs in the TMCTs was then evaluated and compared to the simultaneous oral administration of trimebutine maleate-loaded and mosapride citrate-loaded commercial products in the beagle dog. Among the diluents tested, d-mannitol was selected, since the microcrystalline cellulose and lactose did not inhibit the production of drug impurities due to their hygroscopic properties and chemical interactions, respectively. Furthermore, succinic acid was selected as the stabilizer because it gave the lowest level of total drug impurities of the organic acids tested. The combination tablet of trimebutine maleate and mosapride citrate prepared with D-mannitol and succinic acid gave a total drug content higher than 95% and total impurities lower than 0.5% at 25°C/60% RH and 40°C/75% RH during a 6-month period, indicating that the tablets were stable for at least 6 months. Furthermore, this combination tablet showed a similar dissolution to the trimebutine maleate-loaded and mosapride citrate-loaded commercial products and gave insignificantly different absorption compared to these commercial products in beagle dogs. Thus, the combination tablet of trimebutine maleate and mosapride citrate prepared with d-mannitol and succinic acid would be a stable and effective oral pharmaceutical product for the treatment of functional dyspepsia. © 2010.


Oh D.H.,Yeungnam University | Park Y.-J.,Samil Pharmaceutical Co. | Kang J.H.,Yeungnam University | Yong C.S.,Yeungnam University | And 2 more authors.
Drug Delivery | Year: 2011

To develop a novel flurbiprofen-loaded solid dispersion without crystalline change, various flurbiprofen-loaded solid dispersions were prepared with water, sodium carboxylmethyl cellulose (Na-CMC), and Tween 80. The effect of Na-CMC and Tween 80 on aqueous solubility of flurbiprofen was investigated. The physicochemical properties of solid dispersions were investigated using SEM, DSC, and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared to commercial product. Unlike conventional solid dispersion systems, the flurbiprofen-loaded solid dispersion gave a relatively rough surface and changed no crystalline form of drug. These solid dispersions were formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in changing the hydrophobic drug to hydrophilic form. Furthermore, the flurbiprofen-loaded solid dispersion at the weight ratio of flurbiprofen/Na-CMC/Tween 80 of 6/2.5/0.5 improved ∼ 60-fold drug solubility. It gave higher AUC, Tmax, and Cmax compared to commercial product. The solid dispersion improved almost 1.5-fold bioavailability of drug compared to commercial product in rats. Thus, the flurbiprofen-loaded solid dispersion would be useful to deliver poorly water-soluble flurbiprofen with enhanced bioavailability without crystalline change. © 2011 Informa Healthcare USA, Inc.


Kim J.-A.,Yeungnam University | Neupane G.P.,Yeungnam University | Lee E.S.,Yeungnam University | Jeong B.-S.,Yeungnam University | And 2 more authors.
Expert Opinion on Therapeutic Patents | Year: 2011

Introduction: NADPH oxidases, a family of multi-subunit enzyme complexes, catalyze the production of reactive oxygen species (ROS), which may contribute to the pathogenesis of a variety of diseases. In addition to the first NADPH oxidase found in phagocytes, four non-phagocytic NADPH oxidase isoforms have been identified, which all differ in their catalytic subunit (Nox1-5) and tissue distribution. Areas covered: This paper provides a comprehensive review of the patent literature on NADPH oxidase inhibitors, small molecule Nox inhibitors, peptides and siRNAs. Expert opinion: Since each member of the NADPH oxidase family has great potential as a therapeutic target, several different compounds have been registered as NADPH oxidase inhibitors in the patent literature. As yet, none have gone through clinical trials, and some have not completed preclinical trials, including safety and specificity evaluation. Recently, small molecule pyrazolopyridine and triazolopyrimidine derivatives have been submitted as potent NADPH oxidase inhibitors and reported as first-in-class inhibitors for idiopathic pulmonary fibrosis and acute stroke, respectively. Further clinical efficacy and safety data are warranted to prove their actual clinical utility. © 2011 Informa UK, Ltd.


Lee H.S.,Seoul National University | Lee H.S.,Samil Pharmaceutical Co. | Son W.-C.,University of Ulsan | Ryu J.-E.,University of Ulsan | And 2 more authors.
Molecules | Year: 2014

The aim of this study was to examine the effect of standardized extract of Salvia miltiorrhiza (SME) on gene and protein expression of non-alcoholic steatohepatitis (NASH)-related factors in activated human hepatic stellate cells (HSC), and in mice with steatohepatitis induced by a methionine-choline deficient (MCD) diet. Male C57BL/6J mice were placed on an MCD or control diet for 8 weeks and SME (0, 0.1, 0.5 and 1 mg/kg body weight) was administered orally every other day for 4 or 6 weeks. HSCs from the LX-2 cell line were treated with transforming growth factor β-1 (TGF-β1) or TGF-β1 plus SME (0.1-10 μg/mL). To investigate the effect of SME on reactive oxygen species (ROS)-induced condition, LX-2 cells were treated with hydrogen peroxide (H2O2) or H2O2 plus SME (0.1-100 μg/mL). MCD administration for 12 weeks increased mRNA expression of tumor necrosis factor (TNF-α), TGF-β1, interleukin-1β (IL-1β), C-reactive protein (CRP), α-smooth muscle actin (α-SMA), type I collagen, matrix metalloproteinase-2 (MMP-2) and MMP-9. TGF-β1-induced LX-2 cells exhibited similar gene expression patterns. SME treatment significantly reduced the mRNA and protein expression of NASH-related factors in the mouse model and HSCs. Histopathological liver analysis showed improved non-alcoholic fatty liver disease (NAFLD) activity and fibrosis score in SME-treated mice. The in vivo studies showed that SME had a significant effect at low doses. These results suggest that SME might be a potential therapeutic candidate for NAFLD treatment. © 2014 by the authors.


Lee H.S.,Seoul National University | Lee H.S.,Samil Pharmaceutical Co. | Jun J.-H.,Samil Pharmaceutical Co. | Jung E.-H.,Samil Pharmaceutical Co. | And 2 more authors.
Molecules | Year: 2014

Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13- acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization. © 2014 by the authors.


Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.


PubMed | Samil Pharmaceutical Co., University of Ulsan and Seoul National University
Type: Journal Article | Journal: Molecules (Basel, Switzerland) | Year: 2014

The aim of this study was to examine the effect of standardized extract of Salvia miltiorrhiza (SME) on gene and protein expression of non-alcoholic steatohepatitis (NASH)-related factors in activated human hepatic stellate cells (HSC), and in mice with steatohepatitis induced by a methionine-choline deficient (MCD) diet. Male C57BL/6J mice were placed on an MCD or control diet for 8 weeks and SME (0, 0.1, 0.5 and 1 mg/kg body weight) was administered orally every other day for 4 or 6 weeks. HSCs from the LX-2 cell line were treated with transforming growth factor -1 (TGF-1) or TGF-1 plus SME (0.1-10 g/mL). To investigate the effect of SME on reactive oxygen species (ROS)-induced condition, LX-2 cells were treated with hydrogen peroxide (H2O2) or H2O2 plus SME (0.1-100 g/mL). MCD administration for 12 weeks increased mRNA expression of tumor necrosis factor (TNF-), TGF-1, interleukin-1 (IL-1), C-reactive protein (CRP), -smooth muscle actin (-SMA), type I collagen, matrix metalloproteinase-2 (MMP-2) and MMP-9. TGF-1-induced LX-2 cells exhibited similar gene expression patterns. SME treatment significantly reduced the mRNA and protein expression of NASH-related factors in the mouse model and HSCs. Histopathological liver analysis showed improved non-alcoholic fatty liver disease (NAFLD) activity and fibrosis score in SME-treated mice. The in vivo studies showed that SME had a significant effect at low doses. These results suggest that SME might be a potential therapeutic candidate for NAFLD treatment.


Park Y.-J.,Samil Pharmaceutical Co. | Xuan J.J.,Yeungnam University | Oh D.H.,Yeungnam University | Balakrishnan P.,Yeungnam University | And 5 more authors.
Archives of Pharmacal Research | Year: 2010

To develop a novel itraconazole-loaded solid dispersion without crystalline change with improved bioavailability, various itraconazole-loaded solid dispersions were prepared with water, polyvinylpyrroline, poloxamer and citric acid. The effect of carriers on aqueous solubility of itraconazole was investigated. Their physicochemical properties were investigated using SEM, DSC, and powder X-ray diffraction. The dissolution, bioavailability in rats and stability of solid dispersions were evaluated. Unlike conventional solid dispersion system, the itraconazole-loaded solid dispersion with relatively rough surface did not change crystalline form of drug. Our DSC and powder X-ray diffraction results suggested that this solid dispersion was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in conversion of the hydrophobic drug to hydrophilic form. The itraconazole-loaded solid dispersion at the weight ratio of itraconazole/ polyvinylpyrroline/poloxamer of 10/2/0.5 gave maximum drug solubility of about 20 μg/mL. It did not change the crystalline form of drug for at least 6 months, indicating that it was physically stable. It gave higher AUC, C max and T max compared to itraconazole powder and similar values to the commercial product, suggesting that it was bioequivalent to commercial product in rats. Thus, it would be useful to deliver a poorly water-soluble itraconazole without crystalline change with improved bioavailability. © 2010 The Pharmaceutical Society of Korea and Springer Netherlands.


Lee J.S.,Yeungnam University | Park S.-Y.,Yeungnam University | Thapa D.,Yeungnam University | Choi M.K.,Yeungnam University | And 5 more authors.
Experimental and Molecular Medicine | Year: 2010

TNF-α is a major cytokine involved in inflammatory bowel disease (IBD). In this study, water extract of Grifola frondosa (GFW) was evaluated for its protective effects against colon inflammation through the modulation of TNF-α action. In coculture of HT-29 human colon cancer cells with U937 human monocytic cells, TNF-α-induced monocyte adhesion to HT-29 cells was significantly suppressed by GFW (10, 50, 100 μg/ml). The reduced adhesion by GFW correlated with the suppressed expression of MCP-1 and IL-8, the major IBD-associated chemokines. In addition, treatment with GFW significantly suppressed TNF-α-induced reactive oxygen species production and NF-κB transcriptional activity in HT-29 cells. In differentiated U937 monocytic cells, LPS-induced TNF-α production, which is known to be mediated through NF-κB activation, was significantly suppressed by GFW. In an in vivo rat model of IBD, oral administration of GFW for 5 days (1 g/kg per day) significantly inhibited the trinitrobenzene sulfonic acid (TNBS)-induced weight loss, colon ulceration, myeloperoxidase activity, and TNF-α expression in the colon tissue. Moreover, the effect of GFW was similar to that of intra-peritoneal injection of 5-aminosalicylic acid (5-ASA), an active metabolite of sulfasalazine, commonly used drug for the treatment of IBD. The results suggest that GFW ameliorates colon inflammation by suppressing production of TNF-α as well as its signaling through NF-κB leading to the expression of inflammatory chemokines, MCP-1 and IL-8. Taken together, the results strongly suggest GFW is a valuable medicinal food for IBD treatment, and thus may be used as an alternative medicine for IBD.


Joe J.H.,Yeungnam University | Lee W.M.,Yeungnam University | Park Y.-J.,Samil Pharmaceutical Co. | Joe K.H.,Yeungnam University | And 6 more authors.
International Journal of Pharmaceutics | Year: 2010

Three solid dispersions containing poorly water-soluble tacrolimus were prepared with hydroxypropyl-β-cyclodextrin (HP-β-CD) and dioctyl sulfosuccinate (DOSS) using a spray-drying technique via the solvent-evaporation method with a methylene chloride/ethanol mixture, the solvent-wetting method with ethanol and the surface-attached method with water, respectively. The solubility and dissolution of the drug in the three solid dispersions were evaluated compared to drug powder. Furthermore, their physicochemical properties were investigated using SEM, DSC and powder X-ray diffraction. The solubility and dissolution of the drug were significantly improved in the order of the tacrolimus-loaded solid dispersion prepared by: solvent-evaporation method > solvent-wetting method > surface-attached method. The solid dispersions prepared by solvent evaporation appeared as an aggregated form with the amorphous form. In particular, the solid dispersion prepared by the solvent-evaporation method improved solubility about 900-fold and dissolution of tacrolimus 15-fold because of its reduced particle size, increased surface area and close contact between the hydrophilic carrier and the drug. In the solvent-wetting method, the drug, which was changed to an amorphous form, was attached onto the surface of undissolved carriers. However, the solid dispersion prepared by the surface-attached method gave an unchanged crystalline form. In this solid dispersion, the carriers were attached to the surface of the undissolved drug, resulting in changing the drug from being hydrophobic to hydrophilic. As the crystal form of drug in this solid dispersion was not converted to the amorphous form unlike other solid dispersions, it gave relatively less solubility and dissolution of the drug than did the others. Thus, in the development of a solid-dispersion system containing poorly water-soluble drugs, the method of preparation plays an important role in the solubility and crystallinity of the drugs. © 2010.

Loading Samil Pharmaceutical Co. collaborators
Loading Samil Pharmaceutical Co. collaborators