Sakab AB

Kumla, Sweden
Kumla, Sweden

Time filter

Source Type

Elgh-Dalgren K.,Örebro University | Arwidsson Z.,Sakab AB | Ribe V.,Mälardalen University | Waara S.,Mälardalen University | And 3 more authors.
Water, Air, and Soil Pollution | Year: 2011

Two commercially available aerobic bioremediation methods (Daramend® and BioSan) were utilized to study the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAH) and the effect of the simultaneously present arsenic. The soil was collected at an old wood preservation site, and the initial PAH16-concentration was 46 mg/kg, with mainly high molecular weight congeners. The As concentration was 105 mg/kg with low availability as assessed with sequential extraction. To enhance the availability of PAH, the effect of a nonionic surfactant was evaluated. Degradation of both low and high molecular weight PAH was observed; however, after 30 weeks, the degradation was generally low and no treatment was significantly better than the others. The treatments had, on the other hand, an effect on As remobilization, with increased As concentration in the available fraction after treatment. This may be due to both the microbial activity and the presence of anoxic microsites in the soil. The overall efficiency of the biological treatment was further evaluated using the standardized ecotoxicity test utilizing Vibrio fischeri (Microtox®). The toxicity test demonstrated that the bioremediation led to an increase in toxicity, especially in treatments receiving surfactant. The surfactant implied an increase in contaminant availability but also a decrease in surface tension, which might have contributed to the overall toxicity increase. © 2010 Springer Science+Business Media B.V.


Arwidsson Z.,SAKAB AB | Arwidsson Z.,Örebro University | Elgh-Dalgren K.,Örebro University | von Kronhelm T.,SAKAB AB | And 3 more authors.
Journal of Hazardous Materials | Year: 2010

Removal of Cu, Pb, and Zn by the action of the two biodegradable chelating agents [S,S]-ethylenediaminedisuccinic acid (EDDS) and methylglycinediacetic acid (MGDA), as well as citric acid, was tested. Three soil samples, which had previously been treated by conventional soil washing (water), were utilized in the leaching tests. Experiments were performed in batches (0.3 kg-scale) and with a WTC-mixer system (Water Treatment Construction, 10 kg-scale). EDDS and MGDA were most often equally efficient in removing Cu, Pb, and Zn after 10-60 min. Nonetheless, after 10 d, there were occasionally significant differences in extraction efficiencies. Extraction with citric acid was generally less efficient, however equal for Zn (mainly) after 10 d. Metal removal was similar in batch and WTC-mixer systems, which indicates that a dynamic mixer system could be used in full-scale. Use of biodegradable amino polycarboxylic acids for metal removal, as a second step after soil washing, would release most remaining metals (Cu, Pb and Zn) from the present soils, however only after long leaching time. Thus, a full-scale procedure, based on enhanced metal leaching by amino polycarboxylic acids from soil of the present kind, would require a pre-leaching step lasting several days in order to be efficient. © 2009 Elsevier B.V. All rights reserved.


Arwidsson Z.,Örebro University | Arwidsson Z.,SAKAB AB | Johansson E.,Örebro University | Von Kronhelm T.,SAKAB AB | And 3 more authors.
Water, Air, and Soil Pollution | Year: 2010

Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 μM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 μmol oxalic acid g -1 biomass h-1 (A. niger) and 20 μmol citric acid g-1 biomass h-1 (P. bilaiae), in the presence of the contaminated soil, but only 5 μmol organic acids g-1 biomass h-1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg -1 from initial levels of 3,800, 1,600, and 370 mg kg-1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg-1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated. © 2009 Springer Science+Business Media B.V.


Arwidsson Z.,Örebro University | Arwidsson Z.,SAKAB AB | Allard B.,Örebro University
Water, Air, and Soil Pollution | Year: 2010

Exudation of low molecular weight organic acids by fungi was studied in a project focusing on bioremediation of metal-contaminated soils. The production of acids (mainly oxalic and citric acid) as a response to nutrient variations and presence of metals has recently been reported (Arwidsson et al. 2009). A significant release of metals was observed and was related not only to the production of organic acids but also to the resulting pH decrease in the systems. The processes governing the release and redistribution of metals in the soil-water fungus system were the focus of the present continuation of the project, based on observations of Aspergillus niger, Penicillium bilaiae, and a Penicillium sp. The release of lead was 12% from the soil with the second highest initial load (1,600 mg kg-1), while the release of copper was 90% from the same soil (140 mg kg-1). The dominating mechanism behind the release and subsequent redistribution was the change in pH, going from near neutral to values in the range 2.1-5.9, reflecting the production of organic acids. For some of the systems, the formation of soluble complexes is indicated (copper, at intermediate pH) which favors the metal release. Iron is assumed to play a key role since the amount of secondary iron in the soils is higher than the total load of secondary heavy metals. It can be assumed that most of the heavy metals are initially associated with iron-rich phases through adsorption or coprecipitation. These phases can be dissolved, or associated metals can be desorbed, by a decrease in pH. It would be feasible to further develop a process in technical scale for remediation of metal-contaminated soil, based on microbial metabolite production leading to formation of soluble metal complexes, notably with copper. © 2009 Springer Science+Business Media B.V.


Dalgren K.E.,Örebro University | Duker A.,Örebro University | Arwidsson Z.,Sakab AB | von Kronhelm T.,Sakab AB | And 2 more authors.
Waste Management | Year: 2011

In Sweden, leaching tests with deionized water (D.W.) are utilized in risk assessment of materials entering landfills, but implementation of these results to evaluate the risk of spreading of pollutants in the environment is difficult. One problem is that most leaching procedures only consider heavy metals release, whereas organic pollutants are left out. The aim of the present study was to assess the possible pollutant mitigation in four remediated soils, three with heavy metals and one with polycyclic aromatic hydrocarbons (PAH) contamination. The mitigation was evaluated by standardized batch and column leaching tests utilizing three different leaching solutions: D.W., a weak ionic solution (0.001M CaCl2) and an artificially made soil water (ASW). In general, batch leaching tests implied larger contaminant removal than column leaching test, possibly due to the more rough treatment of the soil particles, and guidelines would at times be exceeded by the batch leaching test but not by column leaching tests. Utilization of CaCl2 was found to release less heavy metal than D.W., whereas the metals mobilized by ASW were removed from solution by the filtration of soil leachates. Low molecular weight PAH was most efficiently mobilized by CaCl2, while D.W. worked better for high molecular weight PAH. Despite very low initial PAH-concentrations, tap- and groundwater criteria were exceeded by all leaching solutions. © 2010 Elsevier Ltd.

Loading Sakab AB collaborators
Loading Sakab AB collaborators