Time filter

Source Type

Saito S.,Kaohsiung Medical University | Saito S.,Nihon University | Saito S.,Saito Laboratory of Cell Technology | Lin Y.-C.,Kaohsiung Medical University | And 5 more authors.
Current Molecular Medicine | Year: 2012

Human amnion-derived cells possess great potential for the repair of human neural disorders, and recent studies have broadened the spectrum for applications because they exhibit the characteristics of multipotent stem cells. These cells express embryonic stem cell markers such as Oct4, Nanog, Sox2, SSEA-3, SSEA-4 and Rex1, and can differentiate into multiple primary germ layers both in vitro and in vivo. Moreover, induced pluripotent stem cells have been generated from amnion-derived cells by virus-mediated delivery of three or four pluripotency-relating transcription factors or by the introduction of only one transcription factor with electroporation. Because human amnion-derived cells are readily available, less likely to contain genetic aberrations and can be reprogrammed earlier and more efficiently than differentiated cells, they can be ideal resources as the donor pluripotent stem cells for therapeutic purposes. We discuss here the highlights of recent studies and potential applications of human amnion-derived multipotent stem cells to stem cell biology as well as to regenerative medicine in the field of aging, heart disease, diabetes and neural disorders. © 2012 Bentham Science Publishers.


Saito S.,Saito Laboratory of Cell Technology | Lin Y.-C.,Kaohsiung Medical University | Tsai M.-H.,Kaohsiung Medical University | Lin C.-S.,Kaohsiung Medical University | And 3 more authors.
Kaohsiung Journal of Medical Sciences | Year: 2015

Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia), cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs) may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches). Reactive oxygen species (ROS) have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16Ink4a, which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs). During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs). ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development. Copyright © 2015, Kaohsiung Medical University. Published by Elsevier Taiwan LLC. All rights reserved.


Yokoyama K.K.,Kaohsiung Medical University | Yokoyama K.K.,University of Tokyo | Huang Y.-C.,Kaohsiung Medical University | Hasegawa H.,Chiba University | And 10 more authors.
Journal of Biomedicine and Biotechnology | Year: 2011

Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene C/EBPδ via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2(-/-) MEFs) are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter of the gene encoding p16(Ink4a), resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed. Copyright © 2011 Yu-Chang Huang et al.


Saito S.,Saito Laboratory of Cell Technology | Saito S.,SPK Co. | Saito S.,Nihon University | Lin Y.-C.,Kaohsiung Medical University | And 7 more authors.
Cellular and Molecular Life Sciences | Year: 2015

Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment. © 2015 The Author(s).


Huang Y.-C.,Kaohsiung Medical University | Saito S.,Kaohsiung Medical University | Saito S.,Saito Laboratory of Cell Technology | Yokoyama K.K.,Kaohsiung Medical University | And 2 more authors.
Kaohsiung Journal of Medical Sciences | Year: 2010

Transcription factor Jun dimerization protein 2 (JDP2) binds directly to histones and DNA, and inhibits p300-mediated acetylation of core histones and reconstituted nucleosomes that contain JDP2-recognition DNA sequences. The region of JDP2 that encompasses its histone-binding domain and DNA-binding region is essential to inhibit histone acetylation by histone acetyltransferases. Moreover, assays of nucleosome assembly in vitro demonstrate that JDP2 also has histone-chaperone activity. The mutation of the region responsible for inhibition of histone acetyltransferase activity within JDP2 eliminates repression of transcription from the c-jun promoter by JDP2, as well as JDP2-mediated inhibition of retinoic-acid-induced differentiation. Thus JDP2 plays a key role as a repressor of cell differentiation by regulating the expression of genes with an activator protein 1 (AP-1) site via inhibition of histone acetylation and/or assembly and disassembly of nucleosomes. Senescent cells show a series of alterations, including flatten and enlarged morphology, increase in nonspecific acidic β-galactosidase activity, chromatin condensation, and changes in gene expression patterns. The onset and maintenance of senescence are regulated by two tumor suppressors, p53 and retinoblastoma proteins. The expression of p53 and retinoblastoma proteins is regulated by two distinct proteins, p16 Ink4a and Arf, respectively, which are encoded by cdkn2a. JDP2 inhibits recruitment of the polycomb repressive complexes 1 and 2 (PRC-1 and PRC-2) to the promoter of the gene that encodes p16 Ink4a and inhibits the methylation of lysine 27 of histone H3 (H3K27). The PRCs associate with the p16 Ink4a/Arf locus in young proliferating cells and dissociate from it in senescent cells. Therefore, it seems that chromatin-remodeling factors that regulate association and dissociation of PRCs, and are controlled by JDP2, might play an important role in the senescence program. The molecular mechanisms that underlie the action of JDP2 in cellular aging and replicative senescence by mediating the dissociation of PRCs from the p16 Ink4a/Arf locus are discussed. © 2010 Elsevier All rights reserved.


Wang S.S.W.,Kaohsiung Medical University | Wuputra K.,Kaohsiung Medical University | Liu C.-J.,Kaohsiung Medical University | Lin Y.-C.,Kaohsiung Medical University | And 19 more authors.
Oncotarget | Year: 2016

To study the mechanisms of gastric tumorigenesis, we have established CSN cell line from human normal gastric mucosa, and CS12, a tumorigenic and invasive gastric cancer cell line from CSN passages. Many stem cell markers were expressed in both CSN and CS12 cells, but LGR5 and NANOG were expressed only in CS12 cells. Increased expression of homeobox A13 (HoxA13) and its downstream cascades was significant for the tumorigenic activity of CS12 cells, and was associated with recruitment of E2F-1 to HoxA13 promoter accompanied with increased trimethylation of histone H3 lysine 4 (H3K4me3) at the hypomethylated E2F motifs. Knockdown of HoxA13 caused the downregulation of long non-coding RNA HOTTIP and insulin growth factor-binding protein 3 (IGFBP-3) genes, indicating that both were targets of HoxA13. Concurrent regulation of HoxA13-HOTTIP was mediated by the mixed lineage leukemia-WD repeat domain 5 complex, which caused the trimethylation of H3K4 and then stimulated cell proliferation. HoxA13 transactivated the IGFBP-3 promoter through the HOX-binding site. Activation of IGFBP-3 stimulated the oncogenic potential and invasion activity. Increased expression of HoxA13 (63.2%) and IGFBP-3 (28.6%) was detected in human gastric cancer tissues and was found in the gastric cancer data of The Cancer Genome Atlas. Taken together, the HoxA13-HOTTIP-IGFBP-3 cascade is critical for the carcinogenic characteristics of CS12 cells.


Lin Y.-C.,Kaohsiung Medical University | Murayama Y.,Nihon University | Hashimoto K.,Tokyo University of Agriculture | Nakamura Y.,RIKEN | And 5 more authors.
Stem Cell Research and Therapy | Year: 2014

Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG, SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor genes such as p21 CIP1 and p16 INK4a through the activation of p53 to be the pre-induced pluripotent stem cells (pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their tumorigenic properties for application in stem cell therapy in the field of regenerative medicine. © 2014 Yokoyama et al.; licensee BioMed Central Ltd.


Wang S.-W.,Kaohsiung Medical University | Wang S.S.-W.,Kaohsiung Medical University | Wu D.-C.,Kaohsiung Medical University | Lin Y.-C.,Kaohsiung Medical University | And 21 more authors.
Cell Death and Disease | Year: 2013

The androgen receptor (AR) has a critical role in promoting androgen-dependent and -independent apoptosis in testicular cells. However, the molecular mechanisms that underlie the ligand-independent apoptosis, including the activity of AR in testicular stem cells, are not completely understood. In the present study, we generated induced pluripotent stemcells (iPSCs) from bovine testicular cells by electroporation of octamer-binding transcription factor 4 (OCT4). The cells were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4, which maintained and stabilized the expression of stemness genes and pluripotency. The iPSCs were used to assess the apoptosis activity following exposure to phthalate esters, including di (2-ethyhexyl) phthalates, di (n-butyl) phthalate, and butyl benzyl phthalate. Phthalate esters significantly reduced the expression of AR in iPSCs and induced a higher ratio of BAX/BCL-2, thereby favoring apoptosis. Phthalate esters also increased the expression of cyclin-dependent kinase inhibitor 1 (p21Cip1) in a p53-dependent manner and enhanced the transcriptional activity of p53. The forced expression of AR and knockdown of p21Cip1 led to the rescue of the phthalate-mediated apoptosis. Overall, this study suggests that testicular iPSCs are a useful system for screening the toxicity of environmental disruptors and examining their effect on the maintenance of stemness and pluripotency, as well as for identifying the iPSC signaling pathway(s) that are deregulated by these chemicals. © 2013 Macmillan Publishers Limited All rights reserved.


PubMed | Institute of Farm Animal Genetics, Nihon University, Saito Laboratory of Cell Technology, Rutgers University and 2 more.
Type: Journal Article | Journal: Cellular and molecular life sciences : CMLS | Year: 2015

Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment.


PubMed | Saito Laboratory of Cell Technology, Kaohsiung Medical University, SPK Co. and Nihon University
Type: Journal Article | Journal: The Kaohsiung journal of medical sciences | Year: 2015

Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia), cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs) may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches). Reactive oxygen species (ROS) have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16(Ink4a), which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs). During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs). ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.

Loading Saito Laboratory of Cell Technology collaborators
Loading Saito Laboratory of Cell Technology collaborators