(Caribbean Netherlands), Netherlands Antilles

Saint James School of Medicine

(Caribbean Netherlands), Netherlands Antilles

Saint James School of Medicine is a private, for-profit medical school headquartered in Park Ridge, Illinois with basic science campuses in Kralendijk, Bonaire, Caribbean Netherlands, British Overseas Territory of Anguilla and Saint Vincent and the Grenadines. Saint James confers upon its graduates the Doctor of Medicine degree. Wikipedia.

Time filter

Source Type

Babokhov P.,University of Massachusetts Boston | Sanyaolu A.O.,Saint James School of Medicine | Oyibo W.A.,University of Lagos | Fagbenro-Beyioku A.F.,University of Lagos | Iriemenam N.C.,University of Lagos
Pathogens and Global Health | Year: 2013

Despite the recent advances in drug research, finding a safe, effective, and easy to use chemotherapy for human African trypanosomiasis (HAT) remains a challenging task. The four current anti-trypanosomiasis drugs have major disadvantages that limit more widespread use of these drugs in the endemic regions of sub-Saharan Africa. Pentamidine and suramin are limited by their effectiveness against the only first stage of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively. In addition, melarsoprol and eflornithine (two second stage drugs) each have disadvantages of their own. The former is toxic and has increasing treatment failures while the latter is expensive, laborious to administer, and lacks efficacy against T. b. rhodesiense. Furthermore, melarsoprol's toxicity and decreasing efficacy are glaring problems and phasing out the drug as a frontline treatment against T. b. gambiense is now possible with the emergence of competent, safe combination chemotherapies such as nifurtimox-eflornithine combination treatment (NECT). The future of eflornithine, on the other hand, is more promising. The drug is useful in the context of combination chemotherapy and potential orally administered analogues. Due to the limits of monotherapies, greater emphasis should be placed on the research and development of combination chemotherapies, based on the successful clinical tests with NECT and its current use as a frontline anti-trypanosomiasis treatment. This review discussed the current and future chemotherapy strategies for the treatment of HAT. © W. S. Maney & Son Ltd 2013.

Davidson B.,Saint James School of Medicine
In vivo (Athens, Greece) | Year: 2014

The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.

Bao S.,Saint James School of Medicine
Journal of Neurogenetics | Year: 2014

Differential adhesion provides a mechanical force to drive cells into stable configurations during the assembly of tissues and organs. This is well illustrated in the Drosophila eye where differential adhesion plays a role in sequential recruitment of all support cells. Cell adhesion, on the other hand, is linked to the cytoskeleton and subject to regulation by cell signaling. The integration of cell adhesion with the cytoskeleton and cell signaling may provide a more thorough explanation for the diversity of forms and shapes seen in tissues and organs. © 2014 Informa Healthcare USA, Inc.

Sharma S.,Saint James School of Medicine | Ebadi M.,University of North Dakota
Neurochemistry International | Year: 2014

Aging is an inevitable biological process, associated with gradual and spontaneous biochemical and physiological changes, and increased susceptibility to diseases. Chronic inflammation and oxidative stress are hallmarks of aging. Metallothioneins (MTs) are low molecular weight, zinc-binding, anti-inflammatory, and antioxidant proteins that provide neuroprotection in the aging brain through zinc-mediated transcriptional regulation of genes involved in cell growth, proliferation, and differentiation. In addition to Zn 2+ homeostasis, antioxidant role of MTs is routed through -SH moieties on cysteine residues. MTs are induced in aging brain as a defensive mechanism to attenuate oxidative and nitrative stress implicated in broadly classified neurodegenerative α-synucleinopathies. In addition, MTs as free radical scavengers inhibit Charnoly body (CB) formation to provide mitochondrial neuroprotection in the aging brain. In general, MT-1 and MT-2 induce cell growth and differentiation, whereas MT-3 is a growth inhibitory factor, which is reduced in Alzheimer's disease. MTs are down-regulated in homozygous weaver (wv/wv) mice exhibiting progressive neurodegeneration, early aging, morbidity, and mortality. These neurodegenerative changes are attenuated in MTs over-expressing wv/wv mice, suggesting the neuroprotective role of MTs in aging. This report provides recent knowledge regarding the therapeutic potential of MTs in neurodegenerative disorders of aging such as Parkinson's disease and Alzheimer's disease. © 2014 Elsevier Ltd. All rights reserved.

Sharma S.,Saint James School of Medicine | Ebadi M.,University of North Dakota
Biomarkers and Genomic Medicine | Year: 2014

The Charnoly body (CB) is a pleomorphic, electron-dense, multilamellar, preapoptotic, mitochondrial biomarker of cell injury. Nutritional stress and environmental toxins induce CB formation in highly vulnerable developing neurons because of compromised mitochondrial bioenergetics; however, nutritional rehabilitation, physiological zinc supplementation, and metallothioneins (MTs) inhibit CB formation. Accumulation of CBs at the junction of the axon hillock may impair the axoplasmic transport of ions, neurotransmitters, neurotropic factors, and enzymes at the synaptic terminals. Therefore, drugs may be developed to inhibit CB formation in neurodegenerative and cardiovascular diseases. In addition, nonspecific induction of CB formation in hyperproliferating cells with cancer chemotherapy causes as adverse effects alopecia, myelosuppression, gastrointestinal tract symptoms, cardiovascular toxicity, and infertility. Hence, drugs may be developed to induce cancer stem cell-specific CB formation to cure multidrug-resistant malignancies and chronic infections. Natural abundance and genetic susceptibility of mitochondrial DNA qualify CB as an early, unique, and sensitive universal biomarker of clinical significance. © 2014.

Asumda F.Z.,Saint James School of Medicine
Stem Cell Research and Therapy | Year: 2013

Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient's own stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be responsible for mesenchymal stem cell aging. © 2013 BioMed Central Ltd.

Sharma S.,Saint James School of Medicine | Rais A.,Saint James School of Medicine | Sandhu R.,Saint James School of Medicine | Nel W.,Saint James School of Medicine | Ebadi M.,University of North Dakota
International Journal of Nanomedicine | Year: 2013

Mammalian metallothioneins (MTs) are low molecular weight (6-7 kDa) cysteine-rich proteins that are specifically induced by metal nanoparticles (NPs). MT induction in cell therapy may provide better protection by serving as antioxidant, anti-inflammatory, antiapoptotic agents, and by augmenting zinc-mediated transcriptional regulation of genes involved in cell proliferation and differentiation. Liposome-encapsulated MT-1 promoter has been used extensively to induce growth hormone or other genes in culture and gene-manipulated animals. MTs are induced as a defensive mechanism in chronic inflammatory conditions including neurodegenerative diseases, cardiovascular diseases, cancer, and infections, hence can serve as early and sensitive biomarkers of environmental safety and effectiveness of newly developed NPs for clinical applications. Microarray analysis has indicated that MTs are significantly induced in drug resistant cancers and during radiation treatment. Nutritional stress and environmental toxins (eg, kainic acid and domoic acid) induce MTs and aggregation of multilamellar electron-dense membrane stacks (Charnoly body) due to mitochondrial degeneration. MTs enhance mitochondrial bioenergetics of reduced nicotinamide adenine dinucleotide-ubiquinone oxidoreductase (complex-1), a rate-limiting enzyme complex involved in the oxidative phosphorylation. Monoamine oxidase-B inhibitors (eg, selegiline) inhibit α-synuclein nitration, implicated in Lewy body formation, and inhibit 1-methyl 4-phenylpyridinium and 3-morpholinosydnonimine-induced apoptosis in cultured human dopaminergic neurons and mesencephalic fetal stem cells. MTs as free radical scavengers inhibit Charnoly body formation and neurodegenerative α-synucleinopathies, hence Charnoly body formation and α-synuclein index may be used as early and sensitive biomarkers to assess NP effectiveness and toxicity to discover better drug delivery and surgical interventions. Furthermore, pharmacological interventions augmenting MTs may facilitate the theranostic potential of NP-labeled cells and other therapeutic agents. These unique characteristics of MTs might be helpful in the synthesis, characterization, and functionalization of emerging NPs for theranostic applications. This report highlights the clinical significance of MTs and their versatility as early, sensitive biomarkers in cell-based therapy and nanomedicine. © 2013 Sharma et al, publisher and licensee Dove Medical Press Ltd.

Chiampas G.T.,Northwestern University | Goyal A.V.,Saint James School of Medicine
Sports Medicine | Year: 2015

Endurance and sporting events have increased in popularity and participation in recent years worldwide, and with this comes the need for medical directors to apply innovative operational strategies and nutritional support to meet such demands. Mass endurance events include sports such as cycling and running half, full and ultra-marathons with over 1000 participants. Athletes, trainers and health care providers can all agree that both participant outcomes and safety are of the utmost importance for any race or sporting event. While demand has increased, there is relatively less published guidance in this area of sports medicine. This review addresses public safety, operational systems, nutritional support and provision of medical care at endurance events. Significant medical conditions in endurance sports include heat illness, hyponatraemia and cardiac incidents. These conditions can differ from those typically encountered by clinicians or in the setting of low-endurance sports, and best practices in their management are discussed. Hydration and nutrition are critical in preventing these and other race-related morbidities, as they can impact both performance and medical outcomes on race day. Finally, the command and communication structures of an organized endurance event are vital to its safety and success, and such strategies and concepts are reviewed for implementation. The nature of endurance events increasingly relies on medical leaders to balance safety and prevention of morbidity while trying to help optimize athlete performance. © 2015, The Author(s).

Sharma S.,Saint James School of Medicine
Current Drug Targets | Year: 2014

Efficient drug delivery systems are exceedingly important for novel drug discovery. The evidence-based personalized medicine (EBPM) promises to deliver the right drug at the right time to a right patient as it covers clinicallysignificant genetic predisposition and chronopharmacological aspects of nanotheranostics. Recently nanotechnology has provided clinically-significant information at the cellular, molecular, and genetic level to facilitate evidence-based personalized treatment. Particularly drug encapsulation in pegylated liposomes has improved pharmacodynamics of cancer, cardiovascular diseases, and neurodegenerative diseases. Long-circulating liposomes and block copolymers concentrate slowly via enhanced permeability and retention (EPR) effect in the solid tumors and are highly significant for the drug delivery in cancer chemotherapeutics. Selective targeting of siRNA and oligonucleotides to tumor cells with a potential to inhibit multi-drug resistant (MDR) malignancies has also shown promise. In addition, implantable drug delivery devices have improved the treatment of several chronic diseases. Recently, microRNA, metallothioneins (MTs), α-synuclein index, and Charnoly body (CB) have emerged as novel drug discovery biomarkers. Hence CB antagonists-loaded ROSscavenging targeted nanoparticles (NPs) may be developed for the treatment of neurodegenerative and cardiovascular diseases. Nonspecific induction of CBs in the hyper-proliferative cells may cause alopecia, gastrointestinal tract (GIT) symptoms, myelosuppression, neurotoxicity, and infertility. Therefore selective CB agonists may be developed to augment cancer stem cell specific CB formation to eradicate MDR malignancies with minimum or no adverse effects. This review highlights recent advances on safe, economical, and effective treatment of neurodegenerative diseases, cardiovascular diseases, and cancer by adopting emerging nanotheranostic strategies to accomplish EBPM. © 2014 Bentham Science Publishers.

Bao S.,Saint James School of Medicine
PLoS Genetics | Year: 2014

Sporadic evidence suggests Notch is involved in cell adhesion. However, the underlying mechanism is unknown. Here I have investigated an epithelial remodeling process in the Drosophila eye in which two primary pigment cells (PPCs) with a characteristic 'kidney' shape enwrap and eventually isolate a group of cone cells from inter-ommatidial cells (IOCs). This paper shows that in the developing Drosophila eye the ligand Delta was transcribed in cone cells and Notch was activated in the adjacent PPC precursors. In the absence of Notch, emerging PPCs failed to enwrap cone cells, and hibris (hbs) and sns, two genes coding for adhesion molecules of the Nephrin group that mediate preferential adhesion, were not transcribed in PPC precursors. Conversely, activation of Notch in single IOCs led to ectopic expression of hbs and sns. By contrast, in a single IOC that normally transcribes rst, a gene coding for an adhesion molecule of the Neph1 group that binds Hbs and Sns, activation of Notch led to a loss of rst transcription. In addition, in a Notch mutant where two emerging PPCs failed to enwrap cone cells, expression of hbs in PPC precursors restored the ability of these cells to surround cone cells. Further, expression of hbs or rst in a single rst- or hbs-expressing cell, respectively, led to removal of the counterpart from the membrane within the same cell through cis-interaction and forced expression of Rst in all hbs-expressing PPCs strongly disrupted the remodeling process. Finally, a loss of both hbs and sns in single PPC precursors led to constriction of the apical surface that compromised the 'kidney' shape of PPCs. Taken together, these results indicate that cone cells utilize Notch signaling to instruct neighboring PPC precursors to surround them and Notch controls the remodeling process by differentially regulating four adhesion genes. © 2014 Sujin Bao.

Loading Saint James School of Medicine collaborators
Loading Saint James School of Medicine collaborators