Entity

Time filter

Source Type

McLean, VA, United States

SAIC Motor Corporation Limited is a Chinese state-owned automotive manufacturing company headquartered in Shanghai, China with multinational operations. One of the "Big Four" Chinese automakers , the company had the largest production volume of any Chinese automaker in 2014 making more than 4.5 million vehicles. Its manufacturing mix is not wholly consumer offerings, however, as many SAIC passenger vehicles are pint-sized commercial vans.SAIC traces its origins to the early years of the Chinese automobile industry in the 1940s, and SAIC was one of the few carmakers in Mao's China, making the Shanghai SH760. Currently, it participates in the oldest surviving Sino-foreign car making joint venture, with Volkswagen, and in addition has had a joint venture with General Motors since 1998. SAIC products sell under a variety of brand names, including those of its joint venture partners. Two notable brands owned by SAIC itself are MG, a historic British car marque, and Roewe, one of the few domestic Chinese luxury car brands. Wikipedia.


Systems and methods are described herein for performing three-dimensional imaging using backscattered photons generated from a positron-electron annihilation. The systems and methods are implemented using the pair of photons created from a positron-electron annihilation. The trajectory and emission time of one of the photons is detected near the annihilation event. Using this collected data, the trajectory of the second photon can be determined. The second photon is used as a probe photon and is directed towards a target for imaging. The interaction of the second probe photon with the target produces back scattered photons that can be detected and used to create a three-dimensional image of the target. The systems and methods described herein are particularly advantageous because they permit imaging with a system from a single side of the target, as opposed to requiring imaging equipment on both sides of the target.


Systems and methods are described herein for managing the operations of a plurality of microgrid modules. A microgrid module includes transformers and/or power converters necessary for modifying the input AC or DC power sources to meet the required characteristics of the output power. The microgrid module further comprises a control software module and a power router software module. The control software module receives data from sensors in the microgrid module and controls the flow of power with controllable elements. The power router software module controls the operation of the power router. The power router can detect changes in demand for power within the microgrid module or from other microgrid modules. The power router can adjust the flow of power between the microgrid modules in response to changes in the supply of power to the microgrid module and changes in the demand for power from the microgrid module.


Patent
Saic and Georgetown University | Date: 2013-09-25

The present invention pertains to a system and method for transdermal sampling, comprising: at least one sampler for retrieving and transferring at least one analyte obtained transdermally from the skin of a subject; at least one detector system for identifying and quantifying said at least one analyte; and at least one logic module for (i) receiving and storing input data from said at least one detector, (ii) relating the input data to other data obtained from the subject, (iii) displaying output information, (iv) transmitting the output information to another system, and (v) controlling the operation of said at least one sampler and at least one detector.


Systems and methods are described herein for controlling the states of a microgrid module. The microgrid module includes transformers and/or power converters necessary for modifying the input AC or DC power sources to meet the required characteristics of the output power. The microgrid module further comprises a control software module installed on a microgrid computer. The control software module receives data associated with the operating state of the microgrid module. The control software module can access rules associated with each microgrid module operating state to determine whether the microgrid module must transition to a different operating state. If a transition is appropriate, the control software module can apply commands to transition the microgrid module to a different operating state. The control software module can continue to monitor the microgrid module to determine when another state transition is appropriate.


A hybrid system torque control method and hybrid automobile using same, the method comprising the following steps: (1) analyzing the torque required by a driver; (2) allocating and coordinating the multiple-source torque. The method ensures a consistent driving feel within the range of real-time power source torque capacity, and facilitates hybrid system matching.

Discover hidden collaborations