Bagnolet, France
Bagnolet, France

Time filter

Source Type

An electronic connecting/disconnecting device for a high voltage unit for storing electrical energy designed to be charged and discharged asymmetrically, in particular a battery arranged as part of an electrical circuit is provided. The device includes a charging switch and a discharge switch arranged in parallel and dimensioned asymmetrically for charging and discharging the unit for storing electrical energy, the charging switch being adapted to block, in a first direction of passage, an electric current flowing therethrough, this first direction of passage being opposite to a second direction of passage in which the discharge switch is adapted to block an electric current passing therethrough, the device being able to be activated when a physical magnitude of an electrical current flowing through the circuit is greater than a predetermined threshold.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-17-2014 | Award Amount: 7.97M | Year: 2015

Lithium sulphur batteries (LSB) are viable candidate for commercialisation among all post Li-ion battery technologies due to their high theoretical energy density and cost effectiveness. Despites many efforts, there are remaining issues that need to be solved and this will provide final direction of LSB technological development. Some of technological aspects, like development of host matrices, interactions of host matrix with polysulphides and interactions between sulphur and electrolyte have been successfully developed within Eurolis project. Open porosity of the cathode, interactions between host matrices and polysulphides and proper solvatation of polysulphides turned to be important for complete utilisation of sulphur, however with this approach didnt result long term cycling. Additionally we showed that effective separation between electrodes enables stable cycling with excellent coulombic efficiency. The remaining issues are mainly connected with a stability of lithium anode during cycling, with engineering of complete cell and with questions about LSB cells implementation into commercial products (ageing, safety, recycling, battery packs). Instability of lithium metal in most of conventional electrolytes and formation of dendrites due to uneven distribution of lithium upon the deposition cause several difficulties. Safety problems connected with dendrites and low coulombic efficiency with a constant increase of inner resistance due to electrolyte degradation represent main technological challenges. From this point of view, stabilisation of lithium metal will have an impact on safety issues. Stabilised interface layer is important from view of engineering of cathode composite and separator porosity since this is important parameter for electrolyte accommodation and volume expansion adjustment. Finally the mechanism of LSB ageing can determine the practical applicability of LSB in different applications.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-10-2014 | Award Amount: 6.49M | Year: 2015

Wide scale implementation of renewable energy will require growth in production of inexpensive, efficient energy storage systems. The extension of battery technology to large-scale storage will become necessary as intermittent renewable energy sources such as wind, solar and wave become more prevalent and integrated into electrical grid. Lithium-ion battery appears as quite mature for this application but its cost per mWh remains high in comparison to high temperature technology such as Zebra, which integrate low cost sodium base materials. Furthermore, as the use of large format lithium battery becomes widespread; increase demand for lithium commodity chemicals combined with geographically constrained Li mineral reserves will drive up prices. Based on the wide availability and low cost of sodium, ambient temperature sodium-based batteries have the potential for meeting large scale grid energy storage needs. In NAIADES we will demonstrate the feasibility of ambient temperature Na-ion battery from the knowledge and achievement that has been done at the laboratory scale, up to a module demonstration in a realistic application environment. Several European industrials, institutes and universities belonging to ALISTORE-ERI have decided to join their efforts to assess the Na-ion technology for stationary storage application through building a 1 kW modules system Na-ion cell which will serve as data base to demonstrate economical and public acceptance. These module prototypes will be developed to meet performances in a 1kW system in a cost-effective, sustainable and environmental-friendly manner. New energy policy will be developed to integer the Na-ion battery in the Smart Grid initiative and promote the penetration of renewable energy in the electric network.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: GV-2-2014 | Award Amount: 8.00M | Year: 2015

Innovation in the automotive industry is of pivotal importance for Europeans prosperity. OSEM-EV will provide solutions for better autonomy and predictable range to address todays car buyers concern about electro mobility. Just increasing the battery capacity is not a viable option because the expectation is to have a familiar level of comfort and safe, eco and human oriented mobility at affordable costs. OSEM-EV will translate the foreseen project innovations into a customer value proposition. The highest priority is improved mileage and predictable range without adding further cost and weight. The negative impact of high and low ambient temperatures will be limited. Cars autonomy will be increased due to a reduction of at least 50% of energy used for passenger comfort and at least 30% for component cooling in extreme conditions compared to current FEVs. The consortium will focus on thermal and coupled electro-thermal energy substitution and harvesting and smart energy usage for cooling and heating of the passenger compartment and in-car infrastructure. OSEM-EV goes for novel electro-thermal architectures and control algorithms including thermal insulation, thermal storage, innovative heating and cooling approaches applied to the powertrain (battery, inverter and motor), battery life duration enhancement as a side effect of thermal management, electronic control of energy and power flows, energy efficiency of electrified accessories, energy substitution and harvesting functions. The consortium will take a radical approach, which does not only rely on improving the efficiency of subsystems but also focuses on their interoperability. By creating an electro-thermal network, most of the energy shall be reutilized, no matter if stored in mechanical, electrical or thermal form.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: COMPET-03-2015 | Award Amount: 999.95K | Year: 2015

For space missions, the energy density of batteries is a key factor of systems mass. A recent battery technology, based on this Lithium-Sulfur chemistry and developed by OXIS Energy, has shown promising results, particularly in terms of specific energy and cycling performances. Lithium-Sulfur batteries could become the next breakthrough technology for space batteries, with a factor of two on the specific energy compared to the current Lithium-Ion products. ECLIPSE ambition is to channel the research activities in Europe and, as a spinning-in effort, ensure that the harsh space constraints are taken into account for the further improvements of the Li-S technology. This research action aimed at developing Li-S technology for space applications focusing on three levels: - Cell level studies, including research to optimise the four main cells components: anode, cathode, separator and electrolyte to achieve 400Wh/kg cells compatible with space cycling profiles. - Battery and encapsulation level, including prototyping and theoretical studies. - System level studies for integration in satellite and launcher architectures, taking into account the economic constraints and the future technical challenges. The expected outcomes of ECLIPSE are: - Mass reduction of batteries by a factor two. - Costs reduction at all levels: subsystem, system and launching costs. - Maturation of the technology (TRL 5 expected at the end of the project). The main impacts of this research are related to competitiveness (lighter is cheaper), non-dependency and innovation: beyond current markets, this breakthrough can enable new challenging missions. The impact of the project is secured by the composition of the consortium led by Airbus Defence and Space with the main European actors of the Lithium-Sulfur electrochemistry and space batteries: ECLIPSE will contribute to the consolidation of an independent European industrial supply chain for Lithium-Sulfur batteries. Project duration is 24 months.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-OC-CCA-02-2015 | Award Amount: 797.13K | Year: 2016

The aim of OPEUS is to develop a simulation methodology and accompanying modelling tool to evaluate, improve and optimise the energy consumption of rail systems with a particular focus on in-vehicle innovation. The OPEUS concept is based on the need to understand and measure the energy being used by each of the relevant components of the rail system and in particular the vehicle. This includes the energy losses in the traction chain, the use of technologies to reduce these and to optimise energy consumption (e.g. ESSs). Specifically, the OPEUS approach has three components at its core: i) the energy simulation model ii) the energy use requirements (e.g. duty cycles) and iii) the energy usage outlook and optimisation strategies recommendation. The concept builds on an extensive range of knowledge and outcomes generated by a number of key collaborative projects (e.g. CleanER-D, MERLIN, OSIRIS, RailEnergy, ROLL2RAIL) underpinning the research proposed, ALL of which have been led by OPEUS consortium members. Particularly the tool developed for the CleanER-D project will be used as starting point. Significant complementary work from the academic community will also be used to enhance the activities of the project. Specifically, these previous projects input will be used to: Expand and develop the simulation tool (CleanER-D, MERLIN); Complete the operational requirements by enhancing the urban duty cycles (OSiRIS); Provide a global vision of energy consumption in railways (CleanER-D, OSIRIS, RailEnergy). OPEUS ambition is to firmly contribute to the following key areas: Understand energy consumption of urban railways; Develop a tool to objectively compare technologies and strategies aimed at optimising the energy usage of railway systems; Unlock the potential contribution that novel technologies and associated strategies can make to optimising rail energy consumption; Share a global vision for how energy is used in railways.


In a connecting part for connecting electrodes of an electrochemical cell to a current output terminal of the secondary cell, the connecting part has a surface at least a portion of which includes a plurality of indentations regularly spaced in two directions in the plane defined by the surface.


Patent
Saft | Date: 2016-07-06

A safety device (19) for a battery (12) being designed so that an electrical connector (18) can be connected to the positive (14) and negative (16) electrical terminals of the battery (12) in a first (A+, A) or a second (B+, B) connection position, the safety device (19) being adapted to be selectively positioned in a first or a second safety position so that only the desired connection positions are accessible to an electrical connector (18). A battery including the safety device or a set of such batteries and a method for making such a set of batteries safe.


Electrochemical cells are mounted in a thermal control device which relies on a flow of a heat transfer fluid following round trips inside a casing thereby providing heat exchange between the heat transfer fluid and the entire wall of the electrochemical cells, and secondly, exchanges of heat which are, on average, equivalent for each electrochemical cell, regardless of its position in the thermal control device. The cells are mounted in tightly-fitting tubes arranged in the casing of the thermal control device, with their axis perpendicular to the outward and return flow directions of the heat transfer fluid inside the casing. A production process including a step of introducing the cells into the tubes is disclosed.


Surfactin is produced from Bacillus subtilis ssp. containing sfp gene (lipopeptide biosurfactants produced by fermentation) . Production of surfactin at present is mainly by liquid fermentation, but the production costs are high due to difficulty in purification resulted from addition of the defoaming agent during the production process. Therefore, present invention conducts physical or chemical mutation on Bacillus subtilis subsp. isolated from Thailand seawater shrimp ponds and screens for the mutant strain of Bacillus subtilis subsp. based on sfp gene expression and then produces surfactin from the mutant strain by semi-solid state fermentation.

Loading SAFT collaborators
Loading SAFT collaborators