Sackler Institute for Comparative Genomics

New York City, NY, United States

Sackler Institute for Comparative Genomics

New York City, NY, United States

Time filter

Source Type

News Article | May 18, 2017
Site: www.eurekalert.org

Irvine, Calif., May 18th, 2017 -- By analyzing both the genes that control color detecting photoreceptors and the structural components of the eye itself, University of California, Irvine evolutionary biologists have discovered male and female butterflies of one particular species have the unique ability to see the world differently from each another because of sex-related evolutionary traits. The study, which appears in the journal Molecular Biology and Evolution, offers new insights into these selective environmental pressures that guide butterfly eye evolution. Led by Adriana D. Briscoe, UCI professor of ecology & evolutionary biology at the Ayala School of Biological Sciences, researchers discovered that the butterfly species Heliconius erato possesses a distinct set of visual photoreceptors based on species sex. Females of the species contain two types of the ultraviolet opsin gene (UVRh1 and UVRh2), while males lack UVRh1. The findings were surprising to the group, as no other animal has been found to have a sex-linked difference in the make-up of its eye that depends on the suppression of an opsin gene. The researchers also noted that the violet receptors controlled by the expression of the ultraviolet opsin genes may help facilitate species recognition between Heliconius erato and other butterflies. "We are only now beginning to appreciate that male and female Heliconius see the world through different eyes," said Briscoe. "Pollinator preference can have a huge impact on the evolution of flower coloration, just by virtue of which flower gets visited. Flowers may change their colors to match what butterflies can see; and sex differences add another layer to the story of these interactions." Briscoe and her colleagues were astonished by the sex differences found in the Heliconius erato species; however, it remains to be determined why such differences would evolve in the first place. Their findings shed light on a fascinating way that environmental pressure can give rise to the origins of a new visual receptor. "We think this study will inspire visual ecologists to look more closely at the behavior of each sex - how they see each other, how they see flowers and how they find places to lay their eggs," she said. We are testing this hypothesis by giving male and female Heliconius butterflies color vision tests in the lab." Briscoe and study co-leader, UCI post-doctoral scholar Kyle McCulloch, added "Finding this level of color receptor diversity in closely related butterflies supports other studies showing that eye evolution is not always a slow and conservative process. As a field, we are still not sure why some lineages diversify and use many more color receptors than others, but with this study, we can frame new hypotheses to answer these questions. In particular it will be exciting to learn what mechanisms during development lead to these sex and species differences in the eye, and what selection pressures - mate choice, foraging, oviposition - lead to these differences in Heliconius." Other researchers who contributed to this work are Furong Yuan and Gilbert Smith from UCI, Ying Zhen from Princeton University, Matthew Aardema and Peter Andolfatto from Princeton University and Sackler Institute for Comparative Genomics, Jorge Llorente-Bousquets from Universidad Nacional AutÓnoma de México. The research was supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (DGAPA-UNAM IN-214212 to JL); UCMEXUS-CONACYT (CN-13-591 to AB and JL); and the National Science Foundation (IOS-1257627 to AB and PA). About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www. . Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.


A research group led by the American Museum of Natural History and global wild cat conservation organization Panthera has published the largest gene-based survey of its kind on wild jaguar populations in Mesoamerica. The analysis, published in the journal PLOS ONE, is based on nearly 450 jaguar scat samples collected in Belize, Costa Rica, Guatemala, Honduras, and Mexico. This work identifies areas of conservation concern for Mesoamerican jaguars and underscores the importance of large-scale genetic monitoring efforts when prioritizing conservation and management efforts for this near-threatened, and elusive, carnivore species. "Mesoamerica has one of the highest deforestation rates worldwide, potentially limiting movement and genetic connectivity in forest-dependent jaguars across this fragmented landscape. Large-scale conservation genetics studies on wild jaguars spanning across several range countries assessing these threats are rare and suffer from low sample sizes for this region," said Claudia Wultsch, the lead author of the paper, a scientist in the Museum's Sackler Institute for Comparative Genomics, and a conservation research fellow at Panthera. "Over the last 100 years, jaguars in Mesoamerica have been pushed out from more than 77 percent of their historic range." To get a better idea of the genetic health and connectivity of jaguar populations in this area and the effectiveness of the existing wildlife corridors (i.e., stretches of habitat that facilitate movement between local populations), the researchers turned to DNA obtained from field-collected jaguar scat. This non-invasive technique lets researchers gather large DNA sample sizes of difficult-to-study wildlife species, such as big cats, without physically capturing, handling, or disturbing the animals. Since these samples quickly degrade in the warm and humid conditions of the tropical countries, however, a great deal of laboratory work has to be done to successfully analyze the DNA. "We believe that these jaguars were once continuously distributed over the whole landscape of Mesoamerica, but human activity has resulted in smaller populations that are isolated from other groups," said George Amato, director of the Museum's Sackler Institute for Comparative Genomics and the paper's senior author. "We want to know whether this fragmentation is resulting in reduced gene flow or inbreeding or other things that might be detrimental to the animals. But most importantly, we want to figure out ways to reconnect these populations or, even if they're not completely isolated, to engage in activities that allow jaguars to move more freely across the landscape. One of the only ways to do this is through genetic analysis." The researchers analyzed DNA from 115 individual jaguars spread across five Mesoamerican countries. Overall, they found moderate levels of genetic variation in the jaguars, with the lowest diversity in Mexico, followed by Honduras. Low levels of genetic diversity could decrease reproductive fitness and resistance to disease, and generally lower animals' potential to adapt to a changing environment. When assessing genetic connectivity in Mesoamerican jaguars, the scientists found low levels of gene flow between jaguars in the Selva Maya -- the largest contiguous tropical forest north of the Amazon, spreading over northern Guatemala, central Belize, and southern Mexico -- and those in Honduras. This suggests that there is limited jaguar movement between these two areas, which is somewhat surprising since they are so geographically close. Although more data are needed to fill gaps in the study, the authors say that the region connecting these sites faces rapid land-cover changes, which have severely increased over the last two decades, putting remaining stepping-stone habitats for jaguars at further risk. This region represents a conservation priority and the authors recommend continued management and maintenance of jaguar corridors and mitigation of jaguars' main threats (e.g., human-wildlife conflict). "Large-scale conservation strategies such as Panthera's Jaguar Corridor Initiative, which are instrumental to protect broadly distributed species such as jaguars, maintain their connectivity, and by doing so to ensure their long-term survival, need to incorporate genetic monitoring of wild populations to fully understand how these species respond to environmental changes and increasing levels of human impacts," Wultsch said.


"Mesoamerica has one of the highest deforestation rates worldwide, potentially limiting movement and genetic connectivity in forest-dependent jaguars across this fragmented landscape. Large-scale conservation genetics studies on wild jaguars spanning across several range countries assessing these threats are rare and suffer from low sample sizes for this region," said Claudia Wultsch, the lead author of the paper, a scientist in the Museum's Sackler Institute for Comparative Genomics, and a conservation research fellow at Panthera. "Over the last 100 years, jaguars in Mesoamerica have been pushed out from more than 77 percent of their historic range." To get a better idea of the genetic health and connectivity of jaguar populations in this area and the effectiveness of the existing wildlife corridors (i.e., stretches of habitat that facilitate movement between local populations), the researchers turned to DNA obtained from field-collected jaguar scat. This non-invasive technique lets researchers gather large DNA sample sizes of difficult-to-study wildlife species, such as big cats, without physically capturing, handling, or disturbing the animals. Since these samples quickly degrade in the warm and humid conditions of the tropical countries, however, a great deal of laboratory work has to be done to successfully analyze the DNA. "We believe that these jaguars were once continuously distributed over the whole landscape of Mesoamerica, but human activity has resulted in smaller populations that are isolated from other groups," said George Amato, director of the Museum's Sackler Institute for Comparative Genomics and the paper's senior author. "We want to know whether this fragmentation is resulting in reduced gene flow or inbreeding or other things that might be detrimental to the animals. But most importantly, we want to figure out ways to reconnect these populations or, even if they're not completely isolated, to engage in activities that allow jaguars to move more freely across the landscape. One of the only ways to do this is through genetic analysis." The researchers analyzed DNA from 115 individual jaguars spread across five Mesoamerican countries. Overall, they found moderate levels of genetic variation in the jaguars, with the lowest diversity in Mexico, followed by Honduras. Low levels of genetic diversity could decrease reproductive fitness and resistance to disease, and generally lower animals' potential to adapt to a changing environment. When assessing genetic connectivity in Mesoamerican jaguars, the scientists found low levels of gene flow between jaguars in the Selva Maya—the largest contiguous tropical forest north of the Amazon, spreading over northern Guatemala, central Belize, and southern Mexico—and those in Honduras. This suggests that there is limited jaguar movement between these two areas, which is somewhat surprising since they are so geographically close. Although more data are needed to fill gaps in the study, the authors say that the region connecting these sites faces rapid land-cover changes, which have severely increased over the last two decades, putting remaining stepping-stone habitats for jaguars at further risk. This region represents a conservation priority and the authors recommend continued management and maintenance of jaguar corridors and mitigation of jaguars' main threats (e.g., human-wildlife conflict). "Large-scale conservation strategies such as Panthera's Jaguar Corridor Initiative, which are instrumental to protect broadly distributed species such as jaguars, maintain their connectivity, and by doing so to ensure their long-term survival, need to incorporate genetic monitoring of wild populations to fully understand how these species respond to environmental changes and increasing levels of human impacts," Wultsch said. Explore further: 26 jaguars killed in Panama so far this year More information: Claudia Wultsch et al, Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management, PLOS ONE (2016). DOI: 10.1371/journal.pone.0162377


A research group led by the American Museum of Natural History and global wild cat conservation organization Panthera has published the largest gene-based survey of its kind on wild jaguar populations in Mesoamerica. The analysis, published today in the journal PLOS ONE, is based on nearly 450 jaguar scat samples collected in Belize, Costa Rica, Guatemala, Honduras, and Mexico. This work identifies areas of conservation concern for Mesoamerican jaguars and underscores the importance of large-scale genetic monitoring efforts when prioritizing conservation and management efforts for this near-threatened, and elusive, carnivore species. "Mesoamerica has one of the highest deforestation rates worldwide, potentially limiting movement and genetic connectivity in forest-dependent jaguars across this fragmented landscape. Large-scale conservation genetics studies on wild jaguars spanning across several range countries assessing these threats are rare and suffer from low sample sizes for this region," said Claudia Wultsch, the lead author of the paper, a scientist in the Museum's Sackler Institute for Comparative Genomics, and a conservation research fellow at Panthera. "Over the last 100 years, jaguars in Mesoamerica have been pushed out from more than 77 percent of their historic range." To get a better idea of the genetic health and connectivity of jaguar populations in this area and the effectiveness of the existing wildlife corridors (i.e., stretches of habitat that facilitate movement between local populations), the researchers turned to DNA obtained from field-collected jaguar scat. This non-invasive technique lets researchers gather large DNA sample sizes of difficult-to-study wildlife species, such as big cats, without physically capturing, handling, or disturbing the animals. Since these samples quickly degrade in the warm and humid conditions of the tropical countries, however, a great deal of laboratory work has to be done to successfully analyze the DNA. "We believe that these jaguars were once continuously distributed over the whole landscape of Mesoamerica, but human activity has resulted in smaller populations that are isolated from other groups," said George Amato, director of the Museum's Sackler Institute for Comparative Genomics and the paper's senior author. "We want to know whether this fragmentation is resulting in reduced gene flow or inbreeding or other things that might be detrimental to the animals. But most importantly, we want to figure out ways to reconnect these populations or, even if they're not completely isolated, to engage in activities that allow jaguars to move more freely across the landscape. One of the only ways to do this is through genetic analysis." The researchers analyzed DNA from 115 individual jaguars spread across five Mesoamerican countries. Overall, they found moderate levels of genetic variation in the jaguars, with the lowest diversity in Mexico, followed by Honduras. Low levels of genetic diversity could decrease reproductive fitness and resistance to disease, and generally lower animals' potential to adapt to a changing environment. When assessing genetic connectivity in Mesoamerican jaguars, the scientists found low levels of gene flow between jaguars in the Selva Maya -- the largest contiguous tropical forest north of the Amazon, spreading over northern Guatemala, central Belize, and southern Mexico -- and those in Honduras. This suggests that there is limited jaguar movement between these two areas, which is somewhat surprising since they are so geographically close. Although more data are needed to fill gaps in the study, the authors say that the region connecting these sites faces rapid land-cover changes, which have severely increased over the last two decades, putting remaining stepping-stone habitats for jaguars at further risk. This region represents a conservation priority and the authors recommend continued management and maintenance of jaguar corridors and mitigation of jaguars' main threats (e.g., human-wildlife conflict). "Large-scale conservation strategies such as Panthera's Jaguar Corridor Initiative, which are instrumental to protect broadly distributed species such as jaguars, maintain their connectivity, and by doing so to ensure their long-term survival, need to incorporate genetic monitoring of wild populations to fully understand how these species respond to environmental changes and increasing levels of human impacts," Wultsch said. Other authors on the study include Anthony Caragiulo and Salisa Rabinowitz, American Museum of Natural History; Isabela Dias-Freedman, Rutgers University; and Howard Quigley, Panthera. The American Museum of Natural History, founded in 1869, is one of the world's preeminent scientific, educational, and cultural institutions. The Museum encompasses 45 permanent exhibition halls, including the Rose Center for Earth and Space and the Hayden Planetarium, as well as galleries for temporary exhibitions. It is home to the Theodore Roosevelt Memorial, New York State's official memorial to its 33rd governor and the nation's 26th president, and a tribute to Roosevelt's enduring legacy of conservation. The Museum's five active research divisions and three cross-disciplinary centers support approximately 200 scientists, whose work draws on a world-class permanent collection of more than 33 million specimens and artifacts, as well as specialized collections for frozen tissue and genomic and astrophysical data, and one of the largest natural history libraries in the world. Through its Richard Gilder Graduate School, it is the only American museum authorized to grant the Ph.D. degree and the Master of Arts in Teaching degree. Annual attendance has grown to approximately 5 million, and the Museum's exhibitions and Space Shows can be seen in venues on five continents. The Museum's website and collection of apps for mobile devices extend its collections, exhibitions, and educational programs to millions more beyond its walls. Visit amnh.org for more information. Become a fan of the Museum on Facebook at facebook.com/naturalhistory, and follow us on Instagram at @AMNH, Tumblr at amnhnyc, or Twitter at twitter.com/AMNH.


Maruyama S.,Dalhousie University | Maruyama S.,Japan National Institute for Basic Biology | Kim E.,Sackler Institute for Comparative Genomics
Current Biology | Year: 2013

Green algae, land plants, and other photosynthetic eukaryotes possess plastids, such as chloroplasts, which have evolved from cyanobacterial ancestors via endosymbiosis [1]. An early evolutionary merger between heterotrophic eukaryotes and cyanobacteria called primary endosymbiosis gave rise to the first photosynthetic eukaryotes. A series of plastid acquisitions involving engulfment of eukaryotic phototrophs, known as secondary or tertiary endosymbiosis, followed [2]. Through these repeated symbiotic events, photosynthesis spread across a number of eukaryotic lineages [2, 3]. While the origin of eukaryotic photosynthesis was undoubtedly a fundamentally important evolutionary event in Earth's history, without which much of the modern marine phytoplankton would not exist, the cellular processes that shaped this initial plastid genesis remain largely unknown. Here, we report ultrastructural evidence for bacterial phagocytosis in a primary plastid-bearing alga. This mixotrophic green alga utilizes a mouth-like opening, a tubular channel, and a large permanent vacuole to engulf, transport, and digest bacterial cells. This mode of phagocytosis, likely inherited from its plastid-lacking ancestor, differs from those displayed by many other eukaryotes, including animals, amoebas, and ciliates. These results provide insight into the key phagocytosis step during the origin of the first photosynthetic eukaryotes. © 2013 Elsevier Ltd. All rights reserved.


Kim E.,Sackler Institute for Comparative Genomics | Maruyama S.,Japan National Institute for Basic Biology
Acta Societatis Botanicorum Poloniae | Year: 2014

A single origin of plastids and the monophyly of three "primary" plastid-containing groups - the Chloroplastida (or Viridiplantae; green algae+land plants), Rhodophyta, and Glaucophyta - are widely accepted, mainstream hypotheses that form the basis for many comparative evolutionary studies. This "Archaeplastida" hypothesis, however, thus far has not been unambiguously confirmed by phylogenetic studies based on nucleocytoplasmic markers. In view of this as well as other lines of evidence, we suggest the testing of an alternate hypothesis that plastids of the Chloroplastida are of secondary origin. The new hypothesis is in agreement with, or perhaps better explains, existing data, including both the plastidal and nucleocytoplasmic characteristics of the Chloroplastida in comparison to those of other groups. © The Author(s) 2014.


News Article | February 2, 2016
Site: news.yahoo.com

Male and female adult bedbugs in comparison to apple seeds is shown in this handout photo provided by the American Museum of Natural History (AMNH), in Washington, February 2, 2016. REUTERS/L. Sorkin/AMNH/Handout via Reuters More WASHINGTON (Reuters) - They emerge from their hiding places at night, driven to slake their thirst for human blood. Vampires? No. Bedbugs! These tiny insects have staged a global resurgence in the past two decades after being nearly eradicated in many regions, but scientists on Tuesday unveiled a complete genetic map of the bedbug that could guide efforts to foil the resilient parasite. "This is an enormous new tool for researchers interested in controlling this pest," said George Amato, director of the Sackler Institute for Comparative Genomics at the American Museum of Natural History in New York. "Bed bugs are now very widespread in most major cities around the world, and they have increasingly become resistant to insecticides, making them harder to control," American Museum of Natural History entomologist Louis Sorkin said. The scientists identified genes responsible for their insecticide resistance, genes involved in mitigating the traumatic effects of their brand of copulation and anti-coagulant genes useful for an insect that makes blood its exclusive source of nutrients and water. These genetic traits may present vulnerabilities that could be exploited with future insecticides. The genome also harbors numerous genes that originated in bacteria, including one that helps bedbugs metabolize vitamin B. This indicates antibiotics that target bacteria beneficial to bedbugs could be used to control the insects. During mating, male bedbugs stab a V-shaped area of a female's abdomen with their sickle-shaped genitalia. Females possess genes that control a protein that makes that part of their anatomy stronger and better able to withstand this rough sex. Adult bed bugs measure roughly a quarter inch (5 mm) and are reddish-brown. Their bites are not known to transmit disease but some people have very strong allergic reactions, Weill Cornell Medicine geneticist Christopher Mason said. "Bed bugs will hide in a variety of places throughout a home. Commonly, they will be on the seams of couches and beds or hidden within the frames of furniture. They have been found in electrical sockets, in drawers or where floors and walls meet," University of Cincinnati entomologist Joshua Benoit added. Bedbugs, found on every continent except Antarctica, have been biting people for thousands of years. Widespread insecticide use in homes after World War Two eliminated them from many regions but bedbugs rebounded by developing pesticide resistance, thriving in heated homes and hitching rides in luggage in international travel. The research was published in the journal Nature Communications.


News Article | November 16, 2015
Site: news.yahoo.com

This biofluorescent green eel (lower right corner) surprised scuba-diving scientists, and prompted them to study its glowing proteins. More When scuba-diving scientists serendipitously spotted a glowing green eel in January 2011, they had no idea what caused it to light up like a brilliant neon sign. But now, after hours spent studying the fluorescent proteins of two eels, the researchers have solved the mystery. These proteins, found throughout the eels' muscle and skin tissues, actually originated in vertebrate brains more than 300 million years ago, a new study finds. "It started as a brain protein and then became this fluorescent protein in muscle," said study lead researcher David Gruber, an associate professor of biology at Baruch College in New York City. [See Photos of the Glowing Green Eels] Once the protein made its switch from a neural to a fluorescent protein, it spread like crazy throughout the eel population. Natural selection favored it so much, it's likely fluorescence plays a crucial role in the eel world, Gruber said. For instance, maybe it helps them spawn the next generation, he said. One anecdotal report of such spawning describes a "big, green fluorescent mating event" with a dozens of eels getting it on under a full moon in Indonesia, Gruber said. Typically, these eels are reclusive and shy, spending most of their lives hiding in the holes and crevasses around coral reefs and sea grass beds. But maybe the moonlight stimulates their fluorescent proteins, making them more visible to potential mates, he said. "We're hoping to witness one of these spawning events to see what they're doing," Gruber told Live Science. Moreover, the fluorescence may also play a role in eel communication, predator avoidance or even prey attraction, like the anglerfish's glowing 'fishing rod,' which lures in fishy meals, according to Gruber. After seeing the stunning 2011 photo, the researchers wanted to learn more about the little green eel. They found two eels (Kaupichthys hyoproroides and another species of Kaupichthys) during an expedition in the Bahamas, and brought both back to Gruber's lab in New York City. K. hyoproroides is small — no longer than two human fingers — about 9.8 inches (250 millimeters) long, Gruber said. It's likely that the other eel is a new species in the Kaupichthys genus, he added, but the specimen wasn't in good enough condition to describe it, he said. A tissue analysis showed fluorescence throughout the eels' muscle and skin. But a protein analysis didn't yield any green fluorescent protein (GFP) — a protein famously identified in a hydrozoan jellyfish in 1962. Nor did it match fluorescent proteins found in other glowing sea creatures, such as some fish and sharks, Gruber said. Instead, it bore a resemblance to a fluorescent protein found in Anguilla japonica, an eel species used in sushi whose proteins can fluoresce a weak green color when bound to bilirubin. (Bilirubin is a yellow waste product that comes from broken-down red blood cells. People with jaundice have yellowish skin and eyes because of increased levels of bilirubin in their blood.) The protein from the Kaupichthys eels also needed bilirubin to fluoresce, but a key part of the chemical makeup of this protein was different from the sushi eel's proteins. "It turns out that every one of these new proteins that has this key little region in it has the ability to glow, and glow very bright," Gruber said. [Images: Fish Secretly Glow Vibrant Colors] Intrigued, Gruber and his colleagues teamed up with Rob DeSalle, a curator with the Sackler Institute for Comparative Genomics at the American Museum of Natural History in New York City. DeSalle is an expert in evolutionary biology, and determined that the eels' fluorescent protein is a newly identified family of fluorescent proteins, Gruber said. DeSalle also studied the evolutionary history of the Kaupichthys protein. He saw that it was closely related to a fatty acid-binding protein found in the brain of most vertebrates. This protein likely plays a role in fatty-acid uptake, transport and metabolism in the brain, and may help young neurons migrate and establish cortical layers in the brain, DeSalle told Live Science. However, over time this genetic code for this brain protein underwent three duplication events, meaning there were more copies of the protein available for the organism to play around with, DeSalle said. The duplicated genes for these proteins could then mutate over time, eventually leading to the fluorescent, bilirubin-binding protein that glows bright green in certain eels, the researchers said.


News Article | February 2, 2016
Site: motherboard.vice.com

Researchers have analyzed the whole gross genome for the bedbug Cimex lectularius. Image: Benoit Guenard From New York to London to Istanbul, the bedbug—resistant to most insecticides and able to thrive in damp and dark conditions—continues to terrorise many. But researchers have finally sequenced the common bedbug’s complete genome, and they hope this may help in the future war against the pest. In a study published Tuesday in the journal Nature Communications, researchers from the American Museum of Natural History and Weill Cornell Medicine describe sequencing the genome of Cimex lectularius, the common bed bug species. Their findings could assist other scientists in understanding the pest’s biology and relationship with its environment, which could ultimately lead to the creation of a better pesticide. “This research has provided an enormous amount of information. In the past, it was like you were feeling your way through the dark, but now we have the whole genome and transcriptome,” said George Amato, the director of the Sackler Institute for Comparative Genomics and study lead author, over the phone. The transcriptome is a set of all messenger RNA molecules in one or more cells. The bed bug’s physical appearance, said Amato, doesn’t differ to how it looked 60 million years ago—though it didn’t feed on human blood back then. Its genome, however, has continued to evolve. “We wanted to look at what the differences were in the expressed genes at the different life stages of the bed bug,” he said. The researchers explored whether the bed bug’s genes were similar to the genes of other insect species associated with pesticide resistance. They found that, similar to other pesticide-resistant insects, the bed bug’s genome encodes enzymes and proteins that allow it to fight insecticides by preventing them from penetrating its hard little shell. The researchers also studied which of the bed bug’s genes were expressed when the creature had consumed blood. “Anti-coagulates have turned out to be important bioactive compounds in medicine and biomedical research, so we thought that by elucidating something about the presence of genes in those pathways that they would be of interest to researchers working in those areas,” said Amato. Bed bugs have increased in numbers over recent years, infesting urban areas, causing mass sleeplessness and itching. So the researchers also looked into how bedbugs were spread across a cityscape such as New York to see what sort of effects the distribution of these animals have. “We used the information gathered from the bed bug genome as a way to examine environmental DNA from bedbugs that we could collect from subway systems around the city of New York,” explained Amato. “Is their population structure influenced, for example, by how people use the landscape?” Ultimately, the researchers hope their preliminary investigations will help others come up with stronger solutions against bed bugs. “It’s like having the light turned on. Now scientists are in a much better position to examine all the various areas of interest related to the species,” said Amato.


Falk B.G.,Sackler Institute for Comparative Genomics | Perkins S.L.,Sackler Institute for Comparative Genomics
Molecular Ecology | Year: 2013

Host specificity is one of the potential factors affecting parasite diversification because gene flow may be facilitated or constrained by the number of host species that a parasite can exploit. We test this hypothesis using a costructure approach, comparing two sympatric pinworm parasites that differ in host specificity - Parapharyngodon cubensis and Spauligodon anolis - on the Puerto Rican Bank and St. Croix in the Caribbean. Spauligodon anolis specializes on Anolis lizards, whereas P. cubensis parasitizes Anolis lizards as well as many other species of lizards and snakes. We collected lizards from across the Puerto Rican Bank and St. Croix, sampled them for S. anolis and P. cubensis and generated nuclear and mitochondrial sequence data from the parasites. We used these data to show that P. cubensis is comprised of multiple cryptic species that exhibit limited population structure relative to S. anolis, which is consistent with our prediction based on their host specificity. We also provide evidence that the distribution of P. cubensis species is maintained by competitive exclusion, and in contrast to previous theoretical work, the parasites with the greatest number of host species also reach the highest prevalence rates. Overall, our results are consistent with the hypothesis that host specificity shapes parasite diversification, and suggest that even moderate differences in host specificity may contribute to substantial differences in diversification. © 2013 John Wiley & Sons Ltd.

Loading Sackler Institute for Comparative Genomics collaborators
Loading Sackler Institute for Comparative Genomics collaborators