Time filter

Source Type

Hornok S.,Szent Istvan University | Kontschan J.,Hungarian Academy of Sciences | Kontschan J.,Szent Istvan University | Estrada-Pena A.,University of Zaragoza | And 4 more authors.
Parasites and Vectors | Year: 2015

Background: Recently a new hard tick species, Ixodes ariadnae has been discovered, adding to the two known ixodid tick species (I. vespertilionis and I. simplex) of bats in Europe. Findings: Scanning electron microscopic comparison of adult females of these species shows morphological differences concerning the palps, the scutum, the Haller's organ, the coxae, as well as the arrangement and fine structure of setae. Molecular analysis of 10 geographically different isolates revealed 90-95% sequence homology in the 12S and 16S rDNA genes of bat tick species. Based on 12S rDNA sequences, genotypes of I. ariadnae clustered closest to I. simplex, whereas according to their 16S rDNA gene they were closest to I. vespertilionis. The subolesin gene of I. ariadnae had only 91% sequence homology with that of I. ricinus, and is the longest known among hard tick species. Conclusions: The present study illustrates the morphology and clarifies the phylogenetic relationships of the three known bat tick species that occur in Europe. According to its subolesin gene I. ariadnae may have a long evolutionary history. © 2015 Hornok et al.; licensee BioMed Central.

Gamino V.,Sabio Institute Investigacion En Recursos Cinegeticos Irec | Hofle U.,Sabio Institute Investigacion En Recursos Cinegeticos Irec
Veterinary Research | Year: 2013

West Nile virus (WNV) is a globally distributed arthropod-borne flavivirus capable of infecting a wide variety of vertebrates, with birds as its natural reservoir. Although it had been considered a pathogen of little importance for birds, from the 1990's, and especially after its introduction in the North American continent in 1999, thousands of birds have succumbed to West Nile infection. This review summarizes the pathogenesis and pathology of WNV infection in birds highlighting differences in lesion and antigen distribution and severity among bird orders and families. Despite significant species differences in susceptibility to infection, WNV associated lesions and viral antigen are present in the majority of organs of infected birds. The non-progressive, acute or more prolonged course of the disease accounts for part of the differences in lesion and viral antigen distribution and lesion severity. Most likely a combination of host variables and environmental factors in addition to the intrinsic virulence and pathogenicity of the infecting WNV strain influence the pathogenesis of the infection. © 2013 Gamino and Höfle; licensee BioMed Central Ltd.

Hornok S.,Szent Istvan University | Estrada-Pena A.,University of Zaragoza | Kontschan J.,Hungarian Academy of Sciences | Plantard O.,French National Institute for Agricultural Research | And 18 more authors.
Parasites and Vectors | Year: 2015

Background: Phylogeographical studies allow precise genetic comparison of specimens, which were collected over large geographical ranges and belong to the same or closely related animal species. These methods have also been used to compare ticks of veterinary-medical importance. However, relevant data are missing in the case of ixodid ticks of bats, despite (1) the vast geographical range of both Ixodes vespertilionis and Ixodes simplex, and (2) the considerable uncertainty in their taxonomy, which is currently unresolvable by morphological clues. Methods: In the present study 21 ticks were selected from collections or were freshly removed from bats or cave walls in six European and four Asian countries. The DNA was extracted and PCRs were performed to amplify part of the cytochrome oxidase I (COI), 16S and 12S rDNA genes, followed by sequencing for identification and molecular-phylogenetic comparison. Results: No morphological differences were observed between Ixodes vespertilionis specimens from Spain and from other parts of Europe, but corresponding genotypes had only 94.6 % COI sequence identity. An I. vespertilionis specimen collected in Vietnam was different both morphologically and genetically (i.e. with only 84.1 % COI sequence identity in comparison with I. vespertilionis from Europe). Two ticks (collected in Vietnam and in Japan) formed a monophyletic clade and shared morphological features with I. ariadnae, recently described and hitherto only reported in Europe. In addition, two Asiatic specimens of I. simplex were shown to differ markedly from European genotypes of the same species. Phylogenetic relationships of ticks showed similar clustering patterns with those of their associated bat host species. Conclusions: Although all three ixodid bat tick species evaluated in the present study appear to be widespread in Eurasia, they exhibit pronounced genetic differences. Data of this study also reflect that I. vespertilionis may represent a species complex. © 2015 Hornok et al.

Silva J.B.,Sao Paulo State University | Fonseca A.H.,Federal University of Para | Barbosa J.D.,Federal Rural University of Rio de Janeiro | Cabezas-Cruz A.,Sabio Institute Investigacion En Recursos Cinegeticos Irec | And 3 more authors.
Ticks and Tick-borne Diseases | Year: 2014

The rickettsia Anaplasma marginale is the etiologic agent of bovine anaplasmosis, an important tick-borne disease affecting cattle in tropical and subtropical regions of the world. In endemic regions, the genetic diversity of this pathogen is usually related to the high prevalence of the disease in cattle. The major surface protein 1 alpha (MSP1a) has been used as a marker to characterize the genetic diversity and for geographical identification of A. marginale strains. The present study reports the characterization of A. marginale MSP1a diversity in water buffaloes. Blood samples were collected from 200 water buffaloes on Marajó Island, Brazil where the largest buffalo herd is located in the Western hemisphere. Fifteen buffaloes (7.5%) were positive for A. marginale msp1α by PCR. Four different strains of A. marginale with MSP1a tandem repeat structures (4-63-27), (162-63-27), (78-24-24-25-31) and (τ-10-10-15) were found, being (4-63-27) the most common. MSP1a tandem repeats composition in buffalos and phylogenetic analysis using msp1α gene showed that the A. marginale strains identified in buffaloes are closely related to A. marginale strains from cattle. The results demonstrated low genetic diversity of A. marginale associated with low bacterial prevalence in buffaloes and suggested that buffaloes may be reservoirs of this pathogen for cattle living in the same area. The results also suggested that mechanical transmission and not biological transmission by ticks might be playing the major role for pathogen circulation among water buffaloes in Marajó Island, Brazil. © 2014 Elsevier GmbH.

Ayllon N.,Sabio Institute Investigacion En Recursos Cinegeticos Irec | Villar M.,Sabio Institute Investigacion En Recursos Cinegeticos Irec | Galindo R.C.,Sabio Institute Investigacion En Recursos Cinegeticos Irec | Galindo R.C.,Oklahoma State University | And 8 more authors.
PLoS Genetics | Year: 2015

Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. © 2015 Ayllón et al.

Discover hidden collaborations