Entity

Time filter

Source Type

Stockholm, Sweden

Saab Automobile AB, better known as Saab, is a Swedish car manufacturer currently under receivership. It was formed in 1945 out of Saab AB, "Svenska Aeroplan AB " , a Swedish aerospace and defence company, when Saab AB started a project to design a small automobile. The Saab 92, Saab's first production model, was launched in 1949. Wikipedia.


Patent
Saab | Date: 2014-04-14

The disclosure relates to a system for determining the position of a target. The system comprises a device for determining the position of an observer. The system further comprises a range and direction measuring device. The system even further comprises a coordinate determining module. The coordinate determining module is arranged to receive the position of the observer. The coordinate determining module is further arranged to receive information from the range and direction measuring device. The coordinate determining module is even further arranged to determine initial coordinates of the target based on the position of the observer and the received information from the range and direction measuring device. The system further comprises a wearable presentation device. The wearable presentation device is arranged to receive the determined initial coordinates of the target. The wearable presentation device is further arranged to present a geo-referenced three-dimensional map to the observer. The wearable presentation device is even further arranged to receive input from the observer so as to mark a new position of the target on the geo-referenced three-dimensional map. The wearable presentation device is also arranged to determine final coordinates of the target based on the marked new position of the target. The disclosure also relates to a method, a computer program and a computer program product for determining the position of a target. The disclosure also relates to a system, a method, a computer program and a computer program product for targeting.


Patent
Saab | Date: 2014-04-14

The present disclosure relates to a method (


A method of manufacture of a composite aircraft article aerodynamic surface by forming the composite aircraft article aerodynamic surface on an aircraft article composite forming tool. The aircraft article composite forming tool includes a matrix laminate including an upper ply including a forming surface for forming the composite aircraft article aerodynamic surface. The upper ply of the aircraft article composite forming tool includes a nano filament structure embedded therein. A blank is conformed onto the aircraft article composite forming tool. The aircraft article is formed on the upper ply of the forming surface. The forming surface of the aircraft article composite forming tool is adapted to form an aerodynamic surface of the aircraft article. The blank is cured into the aircraft article. The composite aircraft article is finished.


A method for calculating a Time To Go value between a vehicle and an intruding object. First and second images of the object are retrieved at first and second points of time. A scaling factor is selected and the second image scaled with the scale factor. The scaled image is resampled to a set position. Correlation values are calculated between the first image and the resampled scaled image for different horizontal displacements and/or different vertical displacements for the resampled scaled image. A maximum correlation value is found based on the correlation values. Selecting the scaling factor, resampling, calculating the correlation values, and finding the maximum correlation values are repeated a second predetermined number of times. A largest maximum correlation value is found among the maximum correlation values and the scale factor associated with the largest maximum correlation value. The Time To Go is calculated based on the associated scale factor.


The present invention relates to a system and method for route planning. The system is arranged to be mounted on a moving object. The system comprises a route planning module arranged to plan a route of the object upon request, wherein occasions of being visible from any point in the map within a shooting range during a predetermined time period is minimized. The system is characterized in that the route planning module is arranged to determine areas in the 3D map in which the object will be exposed to a potential threat during a predetermined time period based on line of sight calculations, and determining a re-planned route avoiding said potential threat areas.

Discover hidden collaborations