SA Pathology at Womens and Childrens Hospital

North Adelaide, Australia

SA Pathology at Womens and Childrens Hospital

North Adelaide, Australia
SEARCH FILTERS
Time filter
Source Type

Camacho A.,University of Cambridge | Rodriguez-Cuenca S.,University of Cambridge | Blount M.,University of Cambridge | Prieur X.,University of Cambridge | And 5 more authors.
Experimental Neurology | Year: 2012

Mitochondria dysfunction contributes to the pathophysiology of obesity, diabetes, neurodegeneration and ageing. The peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) coordinates mitochondrial biogenesis and function as well as fatty acid metabolism. It has been suggested that endoplasmic reticulum (ER) stress may be one of the mechanisms linking mitochondrial dysfunction and these pathologies. Here we investigate whether PGC-1β ablation affects the ER stress response induced by specific nutritional and pharmacological challenges in the CNS. By using flow cytometry, western blot, real time PCR and several pharmacological and nutritional interventions in PGC-1β knock out and WT mice, we confirmed that PGC-1β coordinates mitochondria function in brain and reported for the first time that a) ablation of PGC-1β is associated with constitutive activation of mTORC1 pathway associated with increased basal GRP78 protein levels in hypothalamus and cortex of animals fed chow diet; and b) in animals fed chronically with high fat diet (HFD) or high protein diet (HPD), we observed a failure to appropriately induce ER stress response in the absence of PGC-1β, associated with an increase in mTOR pathway phosphorylation. This contrasted with the appropriate upregulation of ER stress response observed in wild type littermates. Additionally, inefficient in vitro induction of ER stress by thapsigargin seems result in apoptotic neuronal cell death in PGC-1β KO. Our data indicate that PGC-1β is required for a neuronal ER response to nutritional stress imposed by HFD and HPD diets and that genetic ablation of PGC-1β might increase the susceptibility to neuronal damage and cell death. © 2012.


Hein L.K.,SA Pathology at Womens and Childrens Hospital | Duplock S.,SA Pathology at Womens and Childrens Hospital | Fuller M.,SA Pathology at Womens and Childrens Hospital | Fuller M.,University of Adelaide
Journal of Lipid Research | Year: 2013

Bis(monoacylglycero)phosphate (BMP) assists lysosomal function by facilitating interaction of hydrolases and activator proteins with sphingolipid substrates. Impaired lysosomal degradation of the sphingolipid glucosylceramide (GC) occurs in Gaucher disease due to an inherited deficiency of acid β-glucosidase, with secondary BMP alterations. We investigated the nature of BMP accumulation and whether its correction reduced the storage burden in a THP-1 macrophage model of Gaucher disease. Using sucrose gradients and detergent solubility, 98% of BMP resided in the detergent-soluble membranes (DSM) rather than in the detergent-resistant membranes (DRM) where 73% of GC predominated. There was a 2-fold widespread elevation in BMP, including the saturated, mono- and polyunsaturated species. Linoleic acid in the culture media selectively reduced BMP from 4.2 nmol/mg to 0.49 nmol/mg (except 18:1/18:2) and prevented up to one third of GC, dihexosylceramide (DHC), and trihexosylceramide (THC) from accumulating. The 2-fold reduction in these sphingolipids occurred only in the DRM and did not reduce 18:1/16:0. However, once GC had accumulated, linoleic acid could not reverse it, DHC, or THC, despite effectively reducing BMP. These results imply a causative link for BMP in the pathobiology of Gaucher disease and demonstrate that linoleic acid can shield the cell from excessive substrate accumulation. Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.


O'Callaghan M.E.,University of Adelaide | MacLennan A.H.,University of Adelaide | McMichael G.L.,University of Adelaide | Haan E.A.,SA Pathology at Womens and Childrens Hospital | And 2 more authors.
Pediatric Research | Year: 2013

Background:The aim of this study was to replicate single-nucleotide polymorphism (SNP) associations with preterm birth (PTB; birth at <37 completed weeks of gestation) and synthesize currently available evidence using meta-analysis.Methods:Spontaneous PTB cases and controls were selected from an existing cohort. Candidate SNPs were taken from an existing genotype panel. A systematic review was conducted for each SNP in the panel to determine suitability as a PTB candidate. Those with significant associations previously reported in Caucasians were selected for replication. Candidate SNPs were already genotyped in cases and controls and clinical data were accessed from state perinatal and cerebral palsy databases. Association analysis was conducted between each SNP and PTB, and meta-analysis was conducted if there were ≥3 studies in the literature. Maternal and fetal SNPs were considered as separate candidates.Results:A cohort of 170 cases and 583 controls was formed. Eight SNPs from the original panel of genotyped SNPs were selected as PTB candidates and for replication on the basis of systematic literature review results. In our cohort, fetal factor V Leiden (FVL) was significantly associated with PTB (odds ratio (OR): 2.6, 95% confidence interval (CI): 1.31-5.17), and meta-analysis confirmed this association (OR: 2.71, 95% CI: 1.15-6.4).Conclusion:Replication and meta-analysis support an increased risk of PTB in Caucasians with the fetal FVL mutation. Copyright © 2013 International Pediatric Research Foundation, Inc.


Hattersley K.J.,SA Pathology at Womens and Childrens Hospital | Hein L.K.,SA Pathology at Womens and Childrens Hospital | Fuller M.,SA Pathology at Womens and Childrens Hospital | Fuller M.,University of Adelaide
Biochemical and Biophysical Research Communications | Year: 2013

Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state. © 2013 Elsevier Inc. All rights reserved.


Homan C.C.,University of Adelaide | Kumar R.,Womens and Childrens Health Research Institute | Kumar R.,University of Adelaide | Nguyen L.S.,University of Adelaide | And 11 more authors.
American Journal of Human Genetics | Year: 2014

With a wealth of disease-associated DNA variants being recently reported, the challenges of providing their functional characterization are mounting. Previously, as part of a large systematic resequencing of the X chromosome in 208 unrelated families with nonsyndromic X-linked intellectual disability, we identified three unique variants (two missense and one protein truncating) in USP9X. To assess the functional significance of these variants, we took advantage of the Usp9x knockout mouse we generated. Loss of Usp9x causes reduction in both axonal growth and neuronal cell migration. Although overexpression of wild-type human USP9X rescued these defects, all three USP9X variants failed to rescue axonal growth, caused reduced USP9X protein localization in axonal growth cones, and (in 2/3 variants) failed to rescue neuronal cell migration. Interestingly, in one of these families, the proband was subsequently identified to have a microdeletion encompassing ARID1B, a known ID gene. Given our findings it is plausible that loss of function of both genes contributes to the individual's phenotype. This case highlights the complexity of the interpretations of genetic findings from genome-wide investigations. We also performed proteomics analysis of neurons from both the wild-type and Usp9x knockout embryos and identified disruption of the cytoskeleton as the main underlying consequence of the loss of Usp9x. Detailed clinical assessment of all three families with USP9X variants identified hypotonia and behavioral and morphological defects as common features in addition to ID. Together our data support involvement of all three USP9X variants in ID in these families and provide likely cellular and molecular mechanisms involved. © 2014 The American Society of Human Genetics.


Fuller M.,SA Pathology at Womens and Childrens Hospital | Fuller M.,University of Adelaide
Lipids in Health and Disease | Year: 2010

Sphingolipids constitute a diverse array of lipids in which fatty acids are linked through amide bonds to a long-chain base, and, structurally, they form the building blocks of eukaryotic membranes. Ceramide is the simplest and serves as a precursor for the synthesis of the three main types of complex sphingolipids; sphingomyelins, glycosphingolipids and gangliosides. Sphingolipids are no longer considered mere structural spectators, but bioactive molecules with functions beyond providing a mechanically stable and chemically resistant barrier to a diverse array of cellular processes. Although sphingolipids form a somewhat minor component of the total cellular lipid pool, their accumulation in certain cells forms the basis of many diseases. Human diseases caused by alterations in the metabolism of sphingolipids are conventionally inborn errors of degradation, the most common being Gaucher disease, in which the catabolism of glucosylceramide is defective and accumulates. Insulin resistance has been reported in patients with Gaucher disease and this article presents evidence that this is due to perturbations in the metabolism of sphingolipids. Ceramide and the more complex sphingolipids, the gangliosides, are constituents of specialised membrane microdomains termed lipid rafts. Lipid rafts play a role in facilitating and regulating lipid and protein interactions in cells, and their unique lipid composition enables them to carry out this role. The lipid composition of rafts is altered in cell models of Gaucher disease which may be responsible for impaired lipid and protein sorting observed in this disorder, and consequently pathology. Lipid rafts are also necessary for correct insulin signalling, and a perturbed lipid raft composition may impair insulin signalling. Unravelling common nodes of interaction between insulin resistance and Gaucher disease may lead to a better understanding of the biochemical mechanisms behind pathology. © 2010 Fuller; licensee BioMed Central Ltd.


Mulley J.C.,SA Pathology at Womens and Childrens Hospital | Mulley J.C.,University of Adelaide | Mefford H.C.,University of Washington
Epilepsia | Year: 2011

We set out to review the extent to which molecular karyotyping has overtaken conventional cytogenetics in applications related to epilepsy. Multiplex ligase-dependent probe amplification (MLPA) targeted to predetermined regions such as SCN1A and KCNQ2 has been effectively applied over the last half a decade, and oligonucleotide array comparative genome hybridization (array CGH) is now well established for genome-wide exploration of microchromosomal variation. Array CGH is applicable to the characterization of lesions present in both sporadic and familial epilepsy, especially where clinical features of affected cases depart from established syndromes. Copy number variants (CNVs) associated with epilepsy and a range of other syndromes and conditions can be recurrent due to nonallelic homologous recombination in regions of segmental duplication. The most common of the recurrent microdeletions associated with generalized epilepsy are typically seen at a frequency of ∼1% at 15q13.3, 16p13.11, and 15q11.2, sites that also confer susceptibility for intellectual disability, autism, and schizophrenia. Incomplete penetrance and variable expressivity confound the established rules of cytogenetics for determining the pathogenicity for novel CNVs; however, as knowledge is gained for each of the recurrent CNVs, this is translated to genetic counseling. CNVs play a significant role in the susceptibility profile for epilepsies, with complex genetics and their comorbidities both from the "hotspots" defined by segmental duplication and elsewhere in the genome where their location and size are often novel. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.


Carriconde F.,Sydney Medical School Westmead Hospital | Gilgado F.,Sydney Medical School Westmead Hospital | Ellis D.,SA Pathology at Womens and Childrens Hospital | Malik R.,University of Sydney | And 5 more authors.
PLoS ONE | Year: 2011

Background: Cryptococcus gattii is a basidiomycetous yeast that causes life-threatening disease in humans and animals. Within C. gattii, four molecular types are recognized (VGI to VGIV). The Australian VGII population has been in the spotlight since 2005, when it was suggested as the possible origin for the ongoing outbreak at Vancouver Island (British Columbia, Canada), with same-sex mating being suggested as the driving force behind the emergence of this outbreak, and is nowadays hypothesized as a widespread phenomenon in C. gattii. However, an in-depth characterization of the Australian VGII population is still lacking. The present work aimed to define the genetic variability within the Australian VGII population and determine processes shaping its population structure. Methodology/Principal Findings: A total of 54 clinical, veterinary and environmental VGII isolates from different parts of the Australian continent were studied. To place the Australian population in a global context, 17 isolates from North America, Europe, Asia and South America were included. Genetic variability was assessed using the newly adopted international consensus multi-locus sequence typing (MLST) scheme, including seven genetic loci: CAP59, GPD1, LAC1, PLB1, SOD1, URA5 and IGS1. Despite the overall clonality observed, the presence of MATa VGII isolates in Australia was demonstrated for the first time in association with recombination in MATα-MATa populations. Our results also support the hypothesis of a "smouldering" outbreak throughout the Australian continent, involving a limited number of VGII genotypes, which is possibly caused by a founder effect followed by a clonal expansion. Conclusions/Significance: The detection of sexual recombination in MATα-MATa population in Australia is in accordance with the natural life cycle of C. gattii involving opposite mating types and presents an alternative to the same-sex mating strategy suggested elsewhere. The potential for an Australian wide outbreak highlights the crucial issue to develop active surveillance procedures. © 2011 Carriconde et al.


Barrs V.R.,University of New South Wales | van Doorn T.M.,Koninklijke Nederlandse Akademie van Wetenschappen Fungal Biodiversity Center | Houbraken J.,Koninklijke Nederlandse Akademie van Wetenschappen Fungal Biodiversity Center | Kidd S.E.,SA Pathology at Womens and Childrens Hospital | And 5 more authors.
PLoS ONE | Year: 2013

We describe a novel heterothallic species in Aspergillus section Fumigati, namely A. felis (neosartorya-morph) isolated from three host species with invasive aspergillosis including a human patient with chronic invasive pulmonary aspergillosis, domestic cats with invasive fungal rhinosinusitis and a dog with disseminated invasive aspergillosis. Disease in all host species was often refractory to aggressive antifungal therapeutic regimens. Four other human isolates previously reported as A. viridinutans were identified as A. felis on comparative sequence analysis of the partial β-tubulin and/or calmodulin genes. A. felis is a heterothallic mold with a fully functioning reproductive cycle, as confirmed by mating-type analysis, induction of teleomorphs within 7 to 10 days in vitro and ascospore germination. Phenotypic analyses show that A. felis can be distinguished from the related species A. viridinutans by its ability to grow at 45°C and from A. fumigatus by its inability to grow at 50°C. Itraconazole and voriconazole cross-resistance was common in vitro. © 2013 Barrs et al.


Snel M.F.,SA Pathology at Womens and Childrens Hospital | Fuller M.,SA Pathology at Womens and Childrens Hospital
Analytical Chemistry | Year: 2010

MALDI mass spectrometric imaging (MSI) enables spatially resolved mass and intensity information to be obtained directly from tissue sections, thereby illustrating how analytes are distributed within these sections. Here we have used an oversampling technique on a commercially available MALDI orthogonal acceleration TOF mass spectrometer with ion mobility separation capability to produce high spatial resolution images of the glycosphingolipid, glucosylceramide (GC). To exemplify the biological application of our approach, GC was imaged in spleen sections from a conditional knockout mouse model of type 1 Gaucher disease in which the catabolism of this glycosphingolipid is impaired. The laser was continually fired at one position until no more ions were observed and then the sample was moved by 15 μm (laser diameter ∼150 μm). Ions were generated from only the unirradiated surface at each of these positions achieving an effective spacing of 15 μm. At 15 μm laser step-size, it was possible to visualize macrophages enriched in GC, which could be distinguished from other cell types in the spleen. Current MALDI MSI spatial resolution is typically limited by the diameter of the laser spot-size, which is usually between 50 and 100 μm, covering an area equivalent to tens of mammalian cells. © 2010 American Chemical Society.

Loading SA Pathology at Womens and Childrens Hospital collaborators
Loading SA Pathology at Womens and Childrens Hospital collaborators