Time filter

Source Type

Otsu, Japan

Ryukoku University is a private university located in Kyoto, Japan. It was founded as a school for Buddhist monks of the Nishi Hongan-ji denomination in 1639, and became a secularized university in 1876. Professors and students of the university established the literary magazine Chūōkōron in 1887. It has three campuses: Fukakusa and Omiya in Kyoto; and Seta in Shiga prefecture. Its campuses are smoke-free. Wikipedia.

Miura K.,University of Tsukuba | Furumoto T.,Ryukoku University
International Journal of Molecular Sciences | Year: 2013

Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Mougi A.,Ryukoku University
Journal of Theoretical Biology | Year: 2012

Recent theories and experiments have shown that plasticity, such as an inducible defense or an inducible offense in predator-prey interactions, strongly influences the stability of the population dynamics. However, such plastic adaptation has not been expected to cause unusual dynamics such as antiphase cycles, which occur in experimental predator-prey systems with evolutionary adaptation in the defensive trait of prey. Here I show that antiphase cycles and cryptic cycles (a large population fluctuation in one species with almost no change in the population of the other species) can occur in a predator-prey system when both member species can change their phenotypes through adaptive plasticity (inducible defenses and offenses). I consider a familiar type of predator-prey system in which both species can change their morphology or behavior through phenotypic plasticity. The plasticity, that is, the ability to change between distinct phenotypes, is assumed to occur so as to maximize their fitness. I examined how the reciprocal adaptive plasticity influences the population dynamics. The results show that unusual dynamics such as antiphase population cycles and cryptic cycles can occur when both species show inducible plasticity. The unusual dynamics are particularly likely to occur when the carrying capacity of the prey is small (the density dependence of the prey's growth is strong). The unusual predator-prey dynamics may be induced by phenotypic plasticity as long as the phenotypic change occurs to maximize fitness. © 2012 Elsevier Ltd.

Population dynamics and evolutionary dynamics can occur on similar time scales, and a coupling of these two processes can lead to novel population dynamics. Recent theoretical studies of coevolving predator-prey systems have concentrated more on the stability of such systems than on the characteristics of cycles when they are unstable. Here I explore the characteristics of the cycles that arise due to coevolution in a system in which prey can increase their ability to escape from predators by becoming either significantly larger or significantly smaller in trait value (i.e.,a bidirectional trait axis). This is a reasonable model of body size evolution in some systems. The results show that antiphase population cycles and cryptic cycles (large population fluctuation in one species but almost no change in another species) can occur in the coevolutionary system but not systems where only a single species evolves. Previously, those dynamical patterns have only been theoretically shown to occur in single species evolutionary models and the coevolutionary model which do not involve a bi-directional axis of adaptation. These unusual dynamics may be observed in predator-prey interactions when the density dependence in the prey species is strong. © 2011 Elsevier Inc.

Furumoto T.,Ryukoku University
Current Opinion in Plant Biology | Year: 2016

Pyruvate is a central metabolite that must be imported into organelles for specific metabolic processes, including C4 photosynthesis. Plastidial and mitochondrial pyruvate transporter molecules were recently identified: the former was found based on C4 photosynthesis transcriptome analysis and the latter using a bioinformatics approach in yeast. The transport activities of these molecules were recently investigated in heterologous expression systems: Escherichia coli and Lactococcus lactis, respectively. These studies demonstrated the important roles of the NHD1/Bass2-protein coupling function and the mitochondria pyruvate carrier protein complex in pyruvate uptake. Here, I summarize the approaches used to isolate these proteins and the issues that remain to be investigated. © 2016 Elsevier Ltd.

Ryukoku University | Date: 2013-03-01

An oxide film according to this invention is a film of an oxide (possibly including inevitable impurities) containing silver (Ag) and nickel (Ni). This oxide film is an aggregate of microcrystals, an amorphous form including microcrystals, or an amorphous form and has p-type conductivity, which exhibits no clear diffraction peak with the XRD analysis, as seen in a chart in FIG.

Discover hidden collaborations