Otsu, Japan
Otsu, Japan

Ryukoku University is a private university located in Kyoto, Japan. It was founded as a school for Buddhist monks of the Nishi Hongan-ji denomination in 1639, and became a secularized university in 1876. Professors and students of the university established the literary magazine Chūōkōron in 1887. It has three campuses: Fukakusa and Omiya in Kyoto; and Seta in Shiga prefecture. Its campuses are smoke-free. Wikipedia.


Time filter

Source Type

Miyatake T.,Ryukoku University | Tamiaki H.,Ritsumeikan University
Coordination Chemistry Reviews | Year: 2010

Chlorophyll molecules are well organized for efficient energy or electron transfer in a light-harvesting antenna or a reaction center of photosynthetic organisms. In order to make effective photosynthetic mimics, self-aggregates of natural chlorophylls and their synthetic analogues have been prepared with the specific intermolecular interactions. Many studies have been carried out to prepare aqueous chlorophyll aggregates by use of surfactants or chemical modifications of the natural pigments, because chlorophylls basically are poorly soluble in water. This review article focuses on the preparation and function of aqueous chlorophyll aggregates used in making artificial photosynthetic systems. © 2009 Elsevier B.V.


Patent
Seiko Epson Corporation and Ryukoku University | Date: 2010-06-22

A semiconductor device includes: a substrate; a p-type organic transistor including an organic semiconductor layer arranged on or above the substrate; and an n-type inorganic transistor including an inorganic semiconductor layer arranged on or above the organic transistor, wherein a channel region of the inorganic transistor overlaps a channel region of the organic transistor at least partially in a plan view.


Mougi A.,Ryukoku University
Journal of Theoretical Biology | Year: 2012

Recent theories and experiments have shown that plasticity, such as an inducible defense or an inducible offense in predator-prey interactions, strongly influences the stability of the population dynamics. However, such plastic adaptation has not been expected to cause unusual dynamics such as antiphase cycles, which occur in experimental predator-prey systems with evolutionary adaptation in the defensive trait of prey. Here I show that antiphase cycles and cryptic cycles (a large population fluctuation in one species with almost no change in the population of the other species) can occur in a predator-prey system when both member species can change their phenotypes through adaptive plasticity (inducible defenses and offenses). I consider a familiar type of predator-prey system in which both species can change their morphology or behavior through phenotypic plasticity. The plasticity, that is, the ability to change between distinct phenotypes, is assumed to occur so as to maximize their fitness. I examined how the reciprocal adaptive plasticity influences the population dynamics. The results show that unusual dynamics such as antiphase population cycles and cryptic cycles can occur when both species show inducible plasticity. The unusual dynamics are particularly likely to occur when the carrying capacity of the prey is small (the density dependence of the prey's growth is strong). The unusual predator-prey dynamics may be induced by phenotypic plasticity as long as the phenotypic change occurs to maximize fitness. © 2012 Elsevier Ltd.


Furumoto T.,Ryukoku University
Current Opinion in Plant Biology | Year: 2016

Pyruvate is a central metabolite that must be imported into organelles for specific metabolic processes, including C4 photosynthesis. Plastidial and mitochondrial pyruvate transporter molecules were recently identified: the former was found based on C4 photosynthesis transcriptome analysis and the latter using a bioinformatics approach in yeast. The transport activities of these molecules were recently investigated in heterologous expression systems: Escherichia coli and Lactococcus lactis, respectively. These studies demonstrated the important roles of the NHD1/Bass2-protein coupling function and the mitochondria pyruvate carrier protein complex in pyruvate uptake. Here, I summarize the approaches used to isolate these proteins and the issues that remain to be investigated. © 2016 Elsevier Ltd.


Population dynamics and evolutionary dynamics can occur on similar time scales, and a coupling of these two processes can lead to novel population dynamics. Recent theoretical studies of coevolving predator-prey systems have concentrated more on the stability of such systems than on the characteristics of cycles when they are unstable. Here I explore the characteristics of the cycles that arise due to coevolution in a system in which prey can increase their ability to escape from predators by becoming either significantly larger or significantly smaller in trait value (i.e.,a bidirectional trait axis). This is a reasonable model of body size evolution in some systems. The results show that antiphase population cycles and cryptic cycles (large population fluctuation in one species but almost no change in another species) can occur in the coevolutionary system but not systems where only a single species evolves. Previously, those dynamical patterns have only been theoretically shown to occur in single species evolutionary models and the coevolutionary model which do not involve a bi-directional axis of adaptation. These unusual dynamics may be observed in predator-prey interactions when the density dependence in the prey species is strong. © 2011 Elsevier Inc.


One oxide film of the present invention is a film of an oxide (which can contain incidental impurities) containing one transition element selected from the group consisting of niobium (Nb) and tantalum (Ta) and copper (Cu). The oxide film is an aggregate of microcrystals, an amorphous form including microcrystals or an amorphous form, which shows no clear diffraction peak in an XRD analysis and has p-type conductivity as shown in the chart of FIG. 5 showing the results of XRD (X-ray diffraction) analyses of a first oxide film and a second oxide film. According to this oxide film, p-type conductivity higher than that of a conventional oxide film is obtained. This oxide film is an aggregate of microcrystals, an amorphous form containing microcrystals or an amorphous form, is consequently easily formed on a large substrate, and is therefore suitable also for industrial production.


Patent
Toppan Printing Co., Tokyo Institute of Technology and Ryukoku University | Date: 2015-04-08

A method is characterized by including the steps of performing a coating or printing of ink for producing a compound semiconductor thin film so as to form a compound semiconductor coating film, the ink including 50% by mass or more of amorphous compound nanoparticles, mechanically applying a pressure to the compound semiconductor coating film, and subjecting the compound semiconductor coating film to a heat-treatment to form a compound semiconductor thin film.


Provided is a multi-mode resonator in which four resonance modes are degenerated, a dielectric member is not necessarily required, and enhanced efficient use of space is obtained. A multi-mode resonator 1 is a multi-mode resonator in which four resonance modes are degenerated, this resonator including an exterior conductor 2 made of a metal material, and formed in the shape of a box, wherein both ends of a cylindrical circumferential wall section 2c are closed off by a first end section 2a and a second end section 2b; a columnar first central conductor disposed inside the exterior conductor 2, one end 3a being shorted to the first end section 2a of the exterior conductor 2 and another end 3b being left open; and a columnar second central conductor disposed inside the exterior conductor 2, one end 4a being shorted to the second end section 2b of the exterior conductor 2 and another end 4b being left open.


Patent
Toppan Printing Co., Tokyo Institute of Technology and Ryukoku University | Date: 2014-11-26

A method includes the steps of performing a coating or printing of ink for producing a compound semiconductor thin film so as to form a compound semiconductor coating film, the ink including 50% by mass or more of amorphous compound nanoparticles, mechanically applying a pressure to the compound semiconductor coating film, and subjecting the compound semiconductor coating film to a heat-treatment to form a compound semiconductor thin film.


Patent
Ryukoku University | Date: 2013-03-01

An oxide film according to this invention is a film of an oxide (possibly including inevitable impurities) containing silver (Ag) and nickel (Ni). This oxide film is an aggregate of microcrystals, an amorphous form including microcrystals, or an amorphous form and has p-type conductivity, which exhibits no clear diffraction peak with the XRD analysis, as seen in a chart in FIG. 3 indicating X-ray diffraction (XRD) analysis results of a first oxide film and a second oxide film. This oxide film achieves a broader bandgap than that of a conventional oxide film as well as high p-type conductivity. This oxide film is an aggregate of microcrystals, an amorphous form containing microcrystals, or an amorphous form as described above, and is thus easily formed on a large substrate and is suitable also for industrial production.

Loading Ryukoku University collaborators
Loading Ryukoku University collaborators