Aachen, Germany
Aachen, Germany

RWTH Aachen University is a research university of technology located in Aachen, North Rhine-Westphalia, Germany. With over 40,000 students enrolled in 130 study programs, it is the largest technical university in Germany. The institution maintains close links to industry and accounts for the highest amount of third-party funds of all German universities in both absolute and relative terms per faculty member.In 2007, RWTH Aachen was chosen by DFG as one of nine German Universities of Excellence for its future concept RWTH 2020: Meeting Global Challenges and additionally won funding for one graduate school and three clusters of excellence. In 2012, RWTH Aachen was selected again as a University of Excellence and altogether financially endowed for one graduate school and two clusters of excellence. RWTH Aachen is one of only six German universities to retain this status from the previous funding period of 2007 - 2012.RWTH Aachen is a founding member of IDEA League, a strategic alliance of five leading universities of technology in Europe. The university is also a member of TU9, DFG and the Top Industrial Managers for Europe network. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-05-2015 | Award Amount: 51.69M | Year: 2016

In order to unlock the full potential of Europes offshore resources, network infrastructure is urgently required, linking off-shore wind parks and on-shore grids in different countries. HVDC technology is envisaged but the deployment of meshed HVDC offshore grids is currently hindered by the high cost of converter technology, lack of experience with protection systems and fault clearance components and immature international regulations and financial instruments. PROMOTioN will overcome these barriers by development and demonstration of three key technologies, a regulatory and financial framework and an offshore grid deployment plan for 2020 and beyond. A first key technology is presented by Diode Rectifier offshore converter. This concept is ground breaking as it challenges the need for complex, bulky and expensive converters, reducing significantly investment and maintenance cost and increasing availability. A fully rated compact diode rectifier converter will be connected to an existing wind farm. The second key technology is an HVDC grid protection system which will be developed and demonstrated utilising multi-vendor methods within the full scale Multi-Terminal Test Environment. The multi-vendor approach will allow DC grid protection to become a plug-and-play solution. The third technology pathway will first time demonstrate performance of existing HVDC circuit breaker prototypes to provide confidence and demonstrate technology readiness of this crucial network component. The additional pathway will develop the international regulatory and financial framework, essential for funding, deployment and operation of meshed offshore HVDC grids. With 35 partners PROMOTioN is ambitious in its scope and advances crucial HVDC grid technologies from medium to high TRL. Consortium includes all major HVDC and wind turbine manufacturers, TSOs linked to the North Sea, offshore wind developers, leading academia and consulting companies.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: GV-11-2016 | Award Amount: 3.50M | Year: 2017

The FUTURE-RADAR project will support the European Technology Platform ERTRAC (the European Road Transport Research Advisory Council) and the European Green Vehicle Initiative PPP to create and implement the needed research and innovation strategies for a sustainable and competitive European road transport system. Linking all relevant stakeholders FUTURE-RADAR will provide the consensus-based plans and roadmaps addressing the key societal, environmental, economic and technological challenges in areas such as road transport safety, urban mobility, long distance freight transport, automated road transport, global competitiveness and all issues related to energy and environment. FUTURE-RADAR will also facilitate exchange between cities in Europa, Asia and Latin America on urban electric mobility solutions. The FUTURE-RADAR activities include project monitoring, strategic research agendas, international assessments and recommendations for innovation deployment as well as twinning of international projects and comprehensive dissemination and awareness activities. Overall it can be stated that FUTURE-RADAR provides the best opportunity to maintain, strengthen and widen the activities to further develop the multi-stakeholder road transport research area, for the high-quality research of societal and industrial relevance in Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-02-2016 | Award Amount: 22.78M | Year: 2017

Five DSOs (CEZ distribuce, ERDF, EON, Enexis, Avacon) associated with power system manufacturers, electricity retailers and power system experts, propose a set of six demonstrations for 12 to 24 months. Within three years, they aim at validating the enabling role of DSOs in calling for flexibility sources according to local, time-varying merit orders. Demonstrations are designed to run 18 separate use cases involving one or several of the levers increasing the local energy system flexibility: energy storage technologies (electricity, heat, cold), demand response schemes with two coupling of networks (electricity and gas, electricity and heat/cold), the integration of grid users owning electric vehicles, and the further automation of grid operations including contributions of micro-grids. The use cases are clustered into three groups. Three use cases in Sweden and the Czech Republic address the enhancement of the distribution network flexibility itself. Five use cases in France, Germany and Sweden demonstrate the role of IT solutions to increase drastically the speed of automation of the distribution networks, which can then make the best use of either local single or aggregated flexibilities. Ten use cases in Czech Republic, France, The Netherlands and Sweden combine an increased network automation and an increased level of aggregation to validate the plausibility of local flexibility markets where both distributed generation and controllable loads can be valued. Replicability of the results is studied by the DSOs and industry with an in-depth analysis of the interchangeability and interoperability of the tested critical technology components. Dissemination targeting the European DSOs and all the stakeholders of the electricity value chain will be addressed by deployment roadmaps for the most promising use cases, thus nourishing the preparation of the practical implementation of the future electricity market design, the draft of which is expected by end of 2016.

Loading RWTH Aachen collaborators
Loading RWTH Aachen collaborators