Time filter

Source Type

Kashuba V.,Karolinska Institutet | Kashuba V.,NASU Institute of Molecular Biology and Genetics | Dmitriev A.A.,Russian Academy of Sciences | Krasnov G.S.,Russian Academy of Sciences | And 10 more authors.
International Journal of Molecular Sciences | Year: 2012

Chromosome 3-specific NotI microarray (NMA) containing 180 clones with 188 genes was used in the study to analyze 18 high grade serous ovarian cancer (HGSOC) samples and 7 benign ovarian tumors. We aimed to find novel methylation-dependent biomarkers for early detection and prognosis of HGSOC. Thirty five NotI markers showed frequency of methylation/deletion more or equal to 17%. To check the results of NMA hybridizations several samples for four genes (LRRC3B, THRB, ITGA9 and RBSP3 (CTDSPL)) were bisulfite sequenced and confirmed the results of NMA hybridization. A set of eight biomarkers: NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL), IQSEC1, NBEAL2, ZIC4, LOC285205 and FOXP1, was identified as the most prominent set capable to detect both early and late stages of ovarian cancer. Sensitivity of this set is equal to (72 ± 11)% and specificity (94 ± 5)%. Early stages represented the most complicated cases for detection. To distinguish between Stages I + II and Stages III + IV of ovarian cancer the most perspective set of biomarkers would include LOC285205, CGGBP1, EPHB1 and NKIRAS1/RPL15. The sensitivity of the set is equal to (80 ± 13)% and the specificity is (88 ± 12)%. Using this technique we plan to validate this panel with new epithelial ovarian cancer samples and add markers from other chromosomes. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Senchenko V.N.,RAS Engelhardt Institute of Molecular Biology | Krasnov G.S.,RAS Engelhardt Institute of Molecular Biology | Dmitriev A.A.,RAS Engelhardt Institute of Molecular Biology | Kudryavtseva A.V.,RAS Engelhardt Institute of Molecular Biology | And 7 more authors.
PLoS ONE | Year: 2011

Background: CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings: We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) - in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance: Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer. © 2011 Senchenko et al.

Dmitriev A.A.,Karolinska Institutet | Dmitriev A.A.,RAS Engelhardt Institute of Molecular Biology | Kashuba V.I.,Karolinska Institutet | Kashuba V.I.,NASU Institute of Molecular Biology and Genetics | And 19 more authors.
Epigenetics | Year: 2012

This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPC R and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non-small cell lung cancer (NSC LC) samples. In general, SCC samples were more frequently methylated/ deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/ deleted in NSC LC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPC R and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80-100%. © 2012 Landes Bioscience.

Loading Russian State Genetics Center Gosgenetika collaborators
Loading Russian State Genetics Center Gosgenetika collaborators