Rui Jin Rehabilitation Hospital

Jinrui, China

Rui Jin Rehabilitation Hospital

Jinrui, China
SEARCH FILTERS
Time filter
Source Type

Junbo W.,University of Sichuan | Sijia L.,University of Sichuan | Hongying C.,Key Laboratory of Rehabilitation Medicine in Sichuan | Lei L.,University of Sichuan | And 2 more authors.
BMC Musculoskeletal Disorders | Year: 2017

Backgroud Whole-body vibration(WBV) has been suggested for the prevention of subchondral bone loss of knee osteoarthritis (OA). This study examined the effects of different frequency of whole-body vibration on subchondral trabecular bone microarchitecture, cartilage degradation and metabolism of the tibia and femoral condyle bone, and joint pain in an anterior cruciate ligament transection (ACLT)-induced knee osteoarthritisrabbit model. Method Ninety adult rabbits were divided into six groups: all groups received unilateral ACLT; Group 1, ACLT only; Group 2, 5 Hz WBV; Group 3, 10 Hz WBV; Group 4, 20 Hz WBV; Group 5, 30 Hz WBV; and Group 6, 40 Hz WBV. Pain was tested via weight-bearing asymmetry. Subchondral trabecular bone microarchitecture was examined using in vivo micro-computed tomography. Knee joint cartilage was evaluated by gross morphology, histology, and ECM gene expression level (aggrecan and type II collagen [CTX-II]). Serum bone-specific alkaline phosphatase, N-mid OC, cartilage oligometric protein, CPII, type I collagen, PIIANP, G1/G2 aggrecan levels, and urinary CTX-II were analyzed. Results After 8 weeks of low-magnitude WBV, the lower frequency (10 Hz and 20 Hz) WBV treatment decreased joint pain and cartilage resorption, accelerated cartilage formation, delayed cartilage degradation especially at the 20 Hz regimen. However, the higher frequencies (30 Hz and 40 Hz) had worse effects, with worse limb function and cartilage volume as well as higher histological scores and cartilage resorption. In contrast, both prevented loss of trabeculae and increased bone turnover. No significant change was observed in the 5 Hz WBV group. Conclusion Our data demonstrate that the lower frequencies (10 Hz and 20 Hz) of low-magnitude WBV increased bone turnover, delayed cartilage degeneration, and caused a significant functional change of the OA-affected limb in ACLT-induced OA rabbit model but did not reverse OA progression after 8 weeks of treatment. © 2017, The Author(s).

Loading Rui Jin Rehabilitation Hospital collaborators
Loading Rui Jin Rehabilitation Hospital collaborators