Royal Society of Chemistry

Wake Forest, NC, United States

Royal Society of Chemistry

Wake Forest, NC, United States
SEARCH FILTERS
Time filter
Source Type

News Article | April 17, 2017
Site: www.eurekalert.org

An eco-friendly method to synthesize DNA-copper nanoflowers with high load efficiencies, low cytotoxicity, and strong resistance against nucleases has been developed by Professor Hyun Gyu Park in the Department of Chemical and Biomolecular Engineering and his collaborators. The research team successfully formed a flower-shaped nanostructure in an eco-friendly condition by using interactions between copper ions and DNA containing amide and amine groups. The resulting nanoflowers exhibit high DNA loading capacities in addition to low cytotoxicity. Flower-shaped nanocrystals called nanoflowers have gained attention for their distinct features of high surface roughness and high surface area to volume ratios. The nanoflowers have been used in many areas including catalysis, electronics, and analytical chemistry. Of late, research breakthroughs were made in the generation of hybrid inorganic-organic nanoflowers containing various enzymes as organic components. The hybridization with inorganic materials greatly enhanced enzymatic activity, stability, and durability compared to the corresponding free enzymes. Generally, the formation of protein nanocrystals requires high heat treatment so it has limitations for achieving the high loading capacities of intact DNA. The research team addressed the issue, focusing on the fact that nucleic acids with well-defined structures and selective recognition properties also contain amide and amine groups in their nucleobases. They proved that flower-like structures could be formed by using nucleic acids as a synthetic template, which paved the way to synthesize the hybrid nanoflowers containing DNA as an organic component in an eco-friendly condition. The team also confirmed that this synthetic method can be universally applied to any DNA sequences containing amide and amine groups. They said their approach is quite unique considering that the majority of previous works focused on the utilization of DNA as a linker to assemble the nanomaterials. They said the method has several advantageous features. First, the 'green' synthetic procedure doesn't involve any toxic chemicals, and shows low cytotoxicity and strong resistance against nucleases. Second, the obtained nanoflowers exhibit exceptionally high DNA loading capacities. Above all, such superior features of hybrid nanoflowers enabled the sensitive detection of various molecules including phenol, hydrogen peroxide, and glucose. DNA-copper nanoflowers showed even higher peroxidase activity than those of protein-copper nanoflowers, which may be due to the larger surface area of the flower- shaped structures, creating a greater chance for applying them in the field of sensing of detection of hydrogen peroxide. The research team expects that their research will create diverse applications in many areas including biosensors and will be further applied into therapeutic applications. Professor Park said, "The inorganic component in the hybrid nanoflowers not only exhibits low cytotoxicity, but also protects the encapsulated DNA from being cleaved by endonuclease enzymes. Using this feature, the nanostructure will be applied into developing gene therapeutic carriers." This research was co-led by Professor Moon Il Kim at Gachon University and KAIST graduate Ki Soo Park, currently a professor at Konkuk University, is the first author. The research was featured as the front cover article of the Journal of Materials Chemistry B on March 28, Issue 12, published by the Royal Society of Chemistry. The research was funded by the Mid-Career Researcher Support Program of the National Research Foundation of Korea and the Global Frontier Project of the Ministry of Science, ICT & Future Planning.


News Article | May 4, 2017
Site: www.eurekalert.org

VIDEO:  The fight against skin cancer just got a new weapon. For years, melanoma researchers have studied samples that were considered uniform in size and color, making them easier to examine... view more The fight against skin cancer just got a new weapon. For years, melanoma researchers have studied samples that were considered uniform in size and color, making them easier to examine by more conventional means. But melanomas don't always come in the same shape and hue; often, melanomas are irregular and dark, making them difficult to investigate. Now, researchers at the University of Missouri have devised a new tool to detect and analyze single melanoma cells that are more representative of the skin cancers developed by most patients. The study, recently reported in Analyst published by the Royal Society of Chemistry, outlines the new techniques that could lead to better and faster diagnoses for the life-threatening disease. "Researchers often seek out the types of cancerous cells that are homogenous in nature and are easier to observe with traditional microscopic devices," said Luis Polo-Parada, an Associate Professor of Medical Pharmacology and Physiology and an investigator at Mizzou's Dalton Cardiovascular Research Center. "Yet, because the vast amount of research is conducted on one type of cell, it often can lead to misdiagnosis in a clinical setting." The team that included Gary Baker, an assistant professor of chemistry in the MU College of Arts and Science and Gerardo Gutierrez-Juarez, a professor and investigator at the University of Guanajuato in Mexico, decided to supplement an emerging technique called photoacoustic (PA) spectroscopy, a specialized optical technique that is used to probe tissues and cells non-invasively. Current systems use the formation of sound waves followed by the absorption of light which means that the tissues must adequately absorb the laser light. This is why, up until now, researchers have focused only on strong-light-absorb cells melanoma cells, Polo-Parada said. The team modified a microscope that was able to merge light sources at a range conducive to observing the details of single melanoma cells. Using the modified system, human melanoma and breast cancers as well as mouse melanoma cells were diagnosed with greater ease and efficiency. The team also noted that as the cancer cells divided, they grew paler in color but the system was able to detect the newer, smaller cells as well. "Overall, our studies show that by using modified techniques we will be able to observe non-uniform cancer cells, regardless of their origin," Polo-Parada said. "Additionally, as these melanoma cells divide and distribute themselves throughout the blood, they can cause melanomas to metastasize. We were able to observe those cancers as well. This method could help medical doctors and pathologists to detect cancers as they spread, becoming one of the tools in the fight against this fatal disease." The study, "Spectrophotometric analysis at the single-cell level: elucidating dispersity within melanic immortalized cell populations," was supported in part by the Mizzou Advantage program, an initiative that fosters interdisciplinary collaboration among faculty, staff, students and external partners to solve real-world problems in four areas of strength identified at the University of Missouri, including Food for the Future, One Health/One Medicine, Sustainable Energy and Media of the Future. Ellison Gordon from the Mizzou Machine Shop was involved in the manufacturing of components for the microscope setup.


News Article | April 20, 2017
Site: www.eurekalert.org

We all like to keep things clean, and disinfectants help that happen. Unfortunately, one of the most widely used antimicrobial products in use since 1964, triclosan, is also one of the top 10 environmental contaminants in rivers - possibly disrupting the endocrine systems of wildlife and causing toxic effects to their reproduction and development. Now, a new study at the University of Nevada, Reno has found a potential way to reduce the presence of the antimicrobial that is also linked to problems with antibiotic resistance. "The results are promising that we gained better understanding about how triclosan is degraded in the natural environment, and can potentially find a way of removing the contaminant from the environment and in the long term fighting the antibiotic resistance problem," Yu "Frank" Yang, assistant professor of environmental engineering at the University, said. Yang and his team's research on how to reduce the presence of triclosan in the environment was recognized among Emerging Investigator Series by the journal Environmental Science: Processes & Impacts, a publication of the Royal Society of Chemistry, and published in the April edition as the inside front-cover story. The article describes how the triclosan, used for things like hand sanitizer, detergents, soaps and paints, can be degraded faster in the environment through a process with a combination of metal-reducing bacterium and natural organic matter. While the nation is phasing out triclosan and finding replacements for the detergents, it's pervasive in the environment and is persistent under certain environmental conditions, Yang said. Because of its persistence and lack of efficient removal processes in most water treatment plants, triclosan has been widely detected in natural waters, soils, sediments and biosolids. "Antibiotic resistance induced by antimicrobial or antibiotic agents is a global problem, if they are not degraded rapidly, then bacteria in the environment get exposure and develop resistant genes and then we can't fight it," Yang said. "If we can completely understand the degradation of antimicrobial agent, we can provide a treatment process in engineered and natural environments." The team tested the matrix of a bacteria strain mixed with the organic material to find the condition that degraded triclosan the fastest. Yang's research found a mixture that reduced the half-life of triclosan to about 10 hours. The overall outcome is determined by the concentration of organic material, microbial activities and the chemistry of the water. "Further study and development are needed, and we would like to fully understand the degradation pathways of emerging organohalides and work out cost-effective removal strategies," Yang said. "Both are challenging tasks." The journal Environmental Science: Processes & Impacts recognized Yang, who is also a member of the College of Science's Global Water Center, for his work and honored him with the distinction of "Emerging Investigator." His paper is part of their 2017 "Emerging Investigator Series" which highlights "the best and brightest early career scientists in the environmental chemical sciences." The journal website explains the "Emerging Investigator" distinction "showcases the high quality research being carried out by researchers in the early stages of their independent careers. It highlights up-and-coming scientists who are internationally recognized for making outstanding contributions to their respective fields." In early April, Yang and his group presented this project and other work in nine presentations at the American Chemical Society's 2017 spring meeting in San Francisco, California. He was also selected in early April by the U.S. National Committee for International Union of Pure and Applied Chemistry as a 2017 Young Observer for the organizations General Assembly and Global Congress in São Paulo, Brazil, this July. He has been at the University of Nevada, Reno since September 2013 as an assistant professor in the Department of Civil and Environmental Engineering. He received his doctorate degree from Peking University, China. Since he joined the University, he has secured more than $1 million of federal research grants as principal investigator and Co-PI, and published 14 peer-reviewed manuscripts in top-tier journals in the area. His research is mainly focused on the molecular-level environmental chemistry for critical environmental issues, including carbon cycles and emerging pollutants. The "Dual Role of Organic Matter in the Anaerobic Degradation of Triclosan" study was supported by the University of Nevada, Reno Startup Fund, the Department of Energy, the U.S. Department of Agriculture and the China Scholarship Council for the support of Lin Wang, a member of the research team.


News Article | April 17, 2017
Site: www.cemag.us

An eco-friendly method to synthesize DNA-copper nanoflowers with high load efficiencies, low cytotoxicity, and strong resistance against nucleases has been developed by Professor Hyun Gyu Park and his collaborators in the Korea Advanced Institute of Science and Technology’s (KAIST) Department of Chemical and Biomolecular Engineering. The research team successfully formed a flower-shaped nanostructure in an eco-friendly condition by using interactions between copper ions and DNA containing amide and amine groups. The resulting nanoflowers exhibit high DNA loading capacities in addition to low cytotoxicity. Flower-shaped nanocrystals called nanoflowers have gained attention for their distinct features of high surface roughness and high surface area to volume ratios. The nanoflowers have been used in many areas including catalysis, electronics, and analytical chemistry. Of late, research breakthroughs were made in the generation of hybrid inorganic-organic nanoflowers containing various enzymes as organic components. The hybridization with inorganic materials greatly enhanced enzymatic activity, stability, and durability compared to the corresponding free enzymes. Generally, the formation of protein nanocrystals requires high heat treatment so it has limitations for achieving the high loading capacities of intact DNA. The research team addressed the issue, focusing on the fact that nucleic acids with well-defined structures and selective recognition properties also contain amide and amine groups in their nucleobases. They proved that flower-like structures could be formed by using nucleic acids as a synthetic template, which paved the way to synthesize the hybrid nanoflowers containing DNA as an organic component in an eco-friendly condition. The team also confirmed that this synthetic method can be universally applied to any DNA sequences containing amide and amine groups. They said their approach is quite unique considering that the majority of previous works focused on the utilization of DNA as a linker to assemble the nanomaterials. They said the method has several advantageous features. First, the “green” synthetic procedure doesn’t involve any toxic chemicals, and shows low cytotoxicity and strong resistance against nucleases. Second, the obtained nanoflowers exhibit exceptionally high DNA loading capacities. Above all, such superior features of hybrid nanoflowers enabled the sensitive detection of various molecules including phenol, hydrogen peroxide, and glucose. DNA-copper nanoflowers showed even higher peroxidase activity than those of protein-copper nanoflowers, which may be due to the larger surface area of the flower- shaped structures, creating a greater chance for applying them in the field of sensing of detection of hydrogen peroxide. The research team expects that their research will create diverse applications in many areas including biosensors and will be further applied into therapeutic applications. Park says, “The inorganic component in the hybrid nanoflowers not only exhibits low cytotoxicity, but also protects the encapsulated DNA from being cleaved by endonuclease enzymes. Using this feature, the nanostructure will be applied into developing gene therapeutic carriers.” This research was co-led by Professor Moon Il Kim at Gachon University and KAIST graduate Ki Soo Park, currently a professor at Konkuk University, is the first author. The research was featured as the front cover article of the Journal of Materials Chemistry B on March 28, Issue 12, published by the Royal Society of Chemistry. The research was funded by the Mid-Career Researcher Support Program of the National Research Foundation of Korea and the Global Frontier Project of the Ministry of Science, ICT & Future Planning.


News Article | May 9, 2017
Site: www.eurekalert.org

Rice University chemist Gustavo Scuseria won the 2017 Royal Society of Chemistry S F Boys - A Rahman Award. This biennial award from the London-based international organization for chemical scientists recognizes outstanding innovative research in the area of computational chemistry, including both quantum chemistry and molecular simulations. Scuseria will complete a lecture tour in the U.K. to share his research. "I am deeply honored to receive this award, whose previous winners are founding figures in electronic structure theory and quantum chemistry," said Scuseria, the Robert A. Welch Professor of Chemistry. "I look forward to sharing exciting new results about our quest for solving the strong correlation problem during my U.K. university tour." Scuseria, who is also a professor of physics and astronomy and of materials science and nanoengineering, focuses on work that straddles the interface of quantum chemistry, condensed matter physics and materials science and, ultimately, the development of important materials for energy and the environment. Scuseria's list of honors includes the Camille Dreyfus Teacher-Scholar Award, a Creativity Extension Award from the National Science Foundation, an IBM Partnership Award, the Feynman Prize in Nanotechnology Theory, a Humboldt Research Award, a Lisa Meitner Minerva Lectureship from Israel and a Distinguished Israel Pollak Lecturer from the Technion. Born and raised in San Fernando, Buenos Aires, Scuseria has been a Rice faculty member since 1989. He is co-editor of the Journal of Chemical Theory and Computation and serves on the Scientific Advisory Board of the Max-Planck Institute for Solid State Research in Stuttgart, Germany, and the Scientific Advisory Board on the Many Electrons Initiative of the Simons Foundation in New York. He is vice president of the International Academy of Quantum Molecular Science and a fellow of the American Chemical Society, the American Physical Society, the American Association for the Advancement of Science, the Guggenheim Foundation and the Royal Society of Chemistry. The Royal Society of Chemistry, which has more than 54,000 members and a heritage that spans 175 years, advances excellence in the chemical sciences. It recognizes achievements by individuals, teams and organizations in advancing the chemical discipline. Fifty previous winners of Royal Society of Chemistry awards have gone on to win Nobel Prizes for their work. This release can be found online at news.rice.edu. Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl. .


News Article | May 9, 2017
Site: www.eurekalert.org

LA JOLLA, CA - May 9, 2017 - Three chemists from The Scripps Research Institute (TSRI)--Dale Boger, Jin-Quan Yu and Phil Baran--have received awards from the Royal Society of Chemistry (RSC), a renowned professional organization for chemists based in the United Kingdom, with more than 54,000 members worldwide. Dale Boger, co-chair of the Department of Chemistry at TSRI, was awarded the 2017 Robert Robinson Award of the RSC's Organic Division. The award honors his groundbreaking studies in natural product synthesis, which could lead to new therapeutic treatments for challenging clinical needs. "I am very honored and humbled to receive the RSC Robert Robinson Award, which has such a distinguished list of prior award winners," Boger said. Jin-Quan Yu, Frank and Bertha Hupp Professor of Chemistry at TSRI, received the 2017 Pedler Award from the RSC's Organic Division in recognition of his development of pioneering methods of C-H activation, a technique in chemistry that can lead to new pharmaceuticals and other natural products. "I hope these new reactions will accelerate the discovery and synthesis of useful molecules, especially medicines," said Yu, who received his Ph.D. in the U.K. at the University of Cambridge and served as a Royal Society fellow. "It gives me a warm feeling to be recognized by the U.K. scientific community that I was part of for 10 years." Phil Baran, the Darlene Shiley Professor of Chemistry at TSRI, received the RSC's 2017 Merck, Sharp & Dohme Award, which honors contributions to any area of organic chemistry from a researcher under the age of 45. Baran's work focuses on developing new chemical reactions and methodologies for more efficient and economically viable routes in drug design. Baran credited his lab members for his success so far. "This award is a recognition of the students and postdoctoral scholars who work tirelessly to invent useful chemistry," Baran said. In addition to £2,000 and a medal, all three awards include a lecture tour in the U.K. The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists -- including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine -- work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. In October 2016, TSRI announced a strategic affiliation with the California Institute for Biomedical Research (Calibr), representing a renewed commitment to the discovery and development of new medicines to address unmet medical needs. For more information, see http://www. .


News Article | May 8, 2017
Site: www.chromatographytechniques.com

Researchers at the University of Southern Denmark, the Polytechnic University of Valencia and the Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) in Spain have discovered a new technique to detect ecstasy that is extremely reliable and simple to use. According to the researchers, many of the testing methods used today often require advanced instruments that are expensive and/or only found in laboratories. Often, there is also a waiting time in connection with the test results. Furthermore, there is also the recurring issue that many methods trigger a false positive a little too often - i.e. showing that a person tested positive for ecstasy even though subsequent tests show otherwise. "It is our impression that a need exists for more reliable, user-friendly and cheaper tests. What makes our method stand out is that it can detect even small traces," said Jan O. Jeppesen, a chemistry professor at the University of Southern Denmark. His research colleagues, Ramón Martínez-Máñez and Félix Sancenón from the Polytechnic Univeristy of Valencia and the CIBER-BBN in Spain, also noted that their method had several advantages. "We have discovered that a certain molecular activity can detect even very small traces of the active compound in ecstasy, MDMA, with almost 100 percent certainty. This knowledge can be used to develop cheap testing kits that are easy to transport and not least use." The researchers’ new method can detect a solution equivalent to 1 gram of MDMA in 1000 liters of water. They have recently published their findings and method in the Royal Society of Chemistry journal Chemical Communications. Jeppesen and his research team at the Department of Physics, Chemistry and Pharmacy at the University of Southern Denmark are working on understanding and building parts for molecular machines - near-unimaginably tiny machines propelled by the movement of molecules. It was during this work that they discovered the molecules’ ability to detect MDMA. It is a research area that is attracting a great deal of attention from all over the world, and the 2016 Nobel Prize in Chemistry went to the chemists Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa for their work on building machines on a molecular level. The opportunities that lie in the field of molecular machines are huge, according to Jeppesen. "The moment you let a molecular machine replace an electric machine, for example, you end up with a much smaller piece of machinery to operate. As a way of illustrating this, consider the following: If we assume that 6 billion people on Earth each possesses 10 computers in one shape or another, those computers will take up an enormous amount of space. If we could instead use molecules to replace all this computer technology, the molecular technology would only take up half a gram of weight." You start with a ball composed of atoms, which is simple to make. The ball is porous and filled with holes, meaning it can be filled up with smaller molecules. In this method, the ball is filled with molecules that are designed to light up if they are released from the holes. If there is no MDMA (methylenedioxymethamphetamine, the active ingredient in ecstasy) within range, the molecules cannot leave the ball. This is because a kind of arm is installed on the exterior of the ball that can open the ball’s pores once it comes into contact with MDMA and keeps the molecules sealed in until that happens. When the ball ‘opens up,’ so to speak, the luminescent molecules stream out and can be detected by a sensor. The ball only opens up once it comes into contact with MDMA, and it can detect even minuscule concentrations of MDMA.


News Article | May 8, 2017
Site: www.chromatographytechniques.com

Researchers at the University of Southern Denmark, the Polytechnic University of Valencia and the Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) in Spain have discovered a new technique to detect ecstasy that is extremely reliable and simple to use. According to the researchers, many of the testing methods used today often require advanced instruments that are expensive and/or only found in laboratories. Often, there is also a waiting time in connection with the test results. Furthermore, there is also the recurring issue that many methods trigger a false positive a little too often - i.e. showing that a person tested positive for ecstasy even though subsequent tests show otherwise. "It is our impression that a need exists for more reliable, user-friendly and cheaper tests. What makes our method stand out is that it can detect even small traces," said Jan O. Jeppesen, a chemistry professor at the University of Southern Denmark. His research colleagues, Ramón Martínez-Máñez and Félix Sancenón from the Polytechnic Univeristy of Valencia and the CIBER-BBN in Spain, also noted that their method had several advantages. "We have discovered that a certain molecular activity can detect even very small traces of the active compound in ecstasy, MDMA, with almost 100 percent certainty. This knowledge can be used to develop cheap testing kits that are easy to transport and not least use." The researchers’ new method can detect a solution equivalent to 1 gram of MDMA in 1000 liters of water. They have recently published their findings and method in the Royal Society of Chemistry journal Chemical Communications. Jeppesen and his research team at the Department of Physics, Chemistry and Pharmacy at the University of Southern Denmark are working on understanding and building parts for molecular machines - near-unimaginably tiny machines propelled by the movement of molecules. It was during this work that they discovered the molecules’ ability to detect MDMA. It is a research area that is attracting a great deal of attention from all over the world, and the 2016 Nobel Prize in Chemistry went to the chemists Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa for their work on building machines on a molecular level. The opportunities that lie in the field of molecular machines are huge, according to Jeppesen. "The moment you let a molecular machine replace an electric machine, for example, you end up with a much smaller piece of machinery to operate. As a way of illustrating this, consider the following: If we assume that 6 billion people on Earth each possesses 10 computers in one shape or another, those computers will take up an enormous amount of space. If we could instead use molecules to replace all this computer technology, the molecular technology would only take up half a gram of weight." You start with a ball composed of atoms, which is simple to make. The ball is porous and filled with holes, meaning it can be filled up with smaller molecules. In this method, the ball is filled with molecules that are designed to light up if they are released from the holes. If there is no MDMA (methylenedioxymethamphetamine, the active ingredient in ecstasy) within range, the molecules cannot leave the ball. This is because a kind of arm is installed on the exterior of the ball that can open the ball’s pores once it comes into contact with MDMA and keeps the molecules sealed in until that happens. When the ball ‘opens up,’ so to speak, the luminescent molecules stream out and can be detected by a sensor. The ball only opens up once it comes into contact with MDMA, and it can detect even minuscule concentrations of MDMA.


News Article | May 9, 2017
Site: www.24-7pressrelease.com

DIJON, FRANCE, May 09, 2017-- Richard Decreau has been included in Marquis Who's Who. As in all Marquis Who's Who biographical volumes, individuals profiled are selected on the basis of current reference value. Factors such as position, noteworthy accomplishments, visibility, and prominence in a field are all taken into account during the selection process.An esteemed chemistry professor born in St. Germain-en-Laye, France, Dr. Decreau is perhaps most noted for his discoveries in the field of Cerenkov luminescence imaging and his substantial contribution to biomimetic chemistry. He started his career by obtaining a Ph.D. in chemistry from Aix-Marseille University in 1998, and went on to complete postdoctoral research at University College London and Stanford University in California. Since 2005, Dr. Decreau has served as a research associate and laboratory manager at Stanford University. He has also studied and taught chemistry at the University of Burgundy Franche Comte.In addition to serving his field in an academic capacity, Dr. Decreau is a reviewer of scientific manuscripts for the Royal Society of Chemistry, the American Chemical Society, Wiley Journals, and Elsevier Journals. He has written and contributed numerous articles to professional journals as well. To stay connected to his field, he maintains affiliation with organizations like the Society of Porphyrins & Phthalocyanines, the French Medicinal Chemistry Society, and the American Chemical Society.Dr. Decreau has received formal honors over the course of his career. These include receiving the CNRS Chair of Excellence in 2010 and earning the Lavoisier Fellowship. His accomplishments have been highlighted in the 32nd and 33rd editions of Who's Who in the World. Outside of his profession, Dr. Decreau's hobbies include astrobiology and history. He and his wife, Marie-Estelle, have two children.About Marquis Who's Who :Since 1899, when A. N. Marquis printed the First Edition of Who's Who in America , Marquis Who's Who has chronicled the lives of the most accomplished individuals and innovators from every significant field of endeavor, including politics, business, medicine, law, education, art, religion and entertainment. Today, Who's Who in America remains an essential biographical source for thousands of researchers, journalists, librarians and executive search firms around the world. Marquis now publishes many Who's Who titles, including Who's Who in America , Who's Who in the World , Who's Who in American Law , Who's Who in Medicine and Healthcare , Who's Who in Science and Engineering , and Who's Who in Asia . Marquis publications may be visited at the official Marquis Who's Who website at www.marquiswhoswho.com


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Training Grant | Award Amount: 4.52M | Year: 2014

Moores Law states that the number of active components on an microchip doubles every 18 months. Variants of this Law can be applied to many measures of computer performance, such as memory and hard disk capacity, and to reductions in the cost of computations. Remarkably, Moores Law has applied for over 50 years during which time computer speeds have increased by a factor of more than 1 billion! This remarkable rise of computational power has affected all of our lives in profound ways, through the widespread usage of computers, the internet and portable electronic devices, such as smartphones and tablets. Unfortunately, Moores Law is not a fundamental law of nature, and sustaining this extraordinary rate of progress requires continuous hard work and investment in new technologies most of which relate to advances in our understanding and ability to control the properties of materials. Computer software plays an important role in enhancing computational performance and in many cases it has been found that for every factor of 10 increase in computational performance achieved by faster hardware, improved software has further increased computational performance by a factor of 100. Furthermore, improved software is also essential for extending the range of physical properties and processes which can be studied computationally. Our EPSRC Centre for Doctoral Training in Computational Methods for Materials Science aims to provide training in numerical methods and modern software development techniques so that the students in the CDT are capable of developing innovative new software which can be used, for instance, to help design new materials and understand the complex processes that occur in materials. The UK, and in particular Cambridge, has been a pioneer in both software and hardware since the earliest programmable computers, and through this strategic investment we aim to ensure that this lead is sustained well into the future.

Loading Royal Society of Chemistry collaborators
Loading Royal Society of Chemistry collaborators