Entity

Time filter

Source Type

Bergen op Zoom, Netherlands

Pouvreau L.,Wageningen University | Jonathan M.C.,Wageningen University | Kabel M.A.,Wageningen University | Hinz S.W.A.,Dyadic Nederland BV | And 2 more authors.
Enzyme and Microbial Technology | Year: 2011

Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated xylo-oligosaccharides and complex non-soluble acetylglucuronoxylan. Both enzymes performed optimally at pH 7.0 and 40°C.Axe2 has a clear preference for acetylated xylo-oligosaccharides (AcXOS) with a high degree of substitution and Axe3 does not show such preference. Axe3 has a preference for large AcXOS (DP 9-12) when compared to smaller AcXOS (especially DP 4-7) while for Axe2 the size of the oligomer is irrelevant. Even though there is difference in substrate affinity towards acetylated xylooligosaccharides from Eucalyptus wood, the final hydrolysis products are the same for Axe2 and Axe3: xylo-oligosaccharides containing one acetyl group located at the non-reducing xylose residue remain as examined using MALDI-TOF MS, CE-LIF and the application of an endo-xylanase (GH 10). © 2011 Elsevier Inc. Source


Appeldoorn M.M.,Wageningen University | Kabel M.A.,Royal Nedalco | Van Eylen D.,Royal Nedalco | Gruppen H.,Wageningen University | Schols H.A.,Wageningen University
Journal of Agricultural and Food Chemistry | Year: 2010

Corn fiber, a byproduct from the corn industry, would be a good source for bioethanol production if the hemicellulose, consisting of polymeric glucoronoarabinoxylans, can be degraded into fermentable sugars. Structural knowledge of the hemicellulose is needed to improve the enzymatic hydrolyses of corn fiber. Oligosaccharides that resisted a mild acid pretreatment and subsequent enzymatic hydrolysis, representing 50% of the starting material, were fractionated on reversed phase and size exclusion material and characterized. The oligosaccharides within each fraction were highly substituted by various compounds. Oligosaccharides containing uronic acid were accumulated in two polar fractions unless also a feruloyl group was present. Feruloylated oligosaccharides, containing mono-and/or diferulic acid, were accumulated within four more apolar fractions. All fractions contained high amounts of acetyl substituents. The data show that complex xylan oligomers are present in which ferulic acid, diferulates, acetic acid, galactose, arabinose, and uronic acids were combined within an oligomer. Hypothetical structures are discussed, demonstrating which enzyme activities are lacking to fully degrade corn glucuronoarabinoxylans. © 2010 American Chemical Society. Source


Kabel M.A.,Royal Nedalco | Yeoman C.J.,Urbana University | Han Y.,Urbana University | Dodd D.,Urbana University | And 6 more authors.
Applied and Environmental Microbiology | Year: 2011

We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOS FA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOS FA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23 likely gives it the ability to hydrolyze substituents on the xylan backbone and enhances its capacity to efficiently degrade hemicellulose. © 2011, American Society for Microbiology. Source


Van Eylen D.,Royal Nedalco | van Dongen F.,Royal Nedalco | Kabel M.,Royal Nedalco | de Bont J.,Royal Nedalco
Bioresource Technology | Year: 2011

Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2. g per g of dry matter) of ethanol was reached. © 2011 Elsevier Ltd. Source

Discover hidden collaborations