Entity

Time filter

Source Type

Phoenix, AZ, United States

A light emitting device includes a substrate, multiple n-type layers, and multiple p-type layers. The n-type layers and the p-type layers each include a group III nitride alloy. At least one of the n-type layers is a compositionally graded n-type group III nitride, and at least one of the p-type layers is a compositionally graded p-type group III nitride. A first ohmic contact for injecting current is formed on the substrate, and a second ohmic contact is formed on a surface of at least one of the p-type layers. Utilizing the disclosed structure and methods, a device capable of emitting light over a wide spectrum may be made without the use of phosphor materials.


Patent
RoseStreet Labs Energy Inc. | Date: 2010-07-09

A tandem photoelectrochemical (PEC) cell including a nitride PEC semiconductor connected in series with a current matched photovoltaic (PV) Si solar cell that provides an internal biasing voltage. A low resistance tunnel junction is formed between the PEC semiconductor and PV cell. The tandem PEC cell is placed together with a counter electrode in contact with an aqueous solution, such that, when exposed to solar radiation, the PEC semiconductor utilizes high energy photons to split water while the PV cell utilizes low energy photons to bias the tandem PEC cell to eliminate the barrier between Fermi energy and redox potentials, thereby initiating the spontaneous dissociation of water in the aqueous solution into hydrogen and oxygen. The conduction band edge (CBE) for n-type PEC semiconductor is located in the vicinity of the Fermi stabilization energy to reduce the barriers for the charge transfer between the PEC semiconductor and the aqueous solution.


A light emitting device includes a substrate, multiple n-type layers, and multiple p-type layers. The n-type layers and the p-type layers each include a group III nitride alloy. At least one of the n-type layers is a compositionally graded n-type group III nitride, and at least one of the p-type layers is a compositionally graded p-type group III nitride. A first ohmic contact for injecting current is formed on the substrate, and a second ohmic contact is formed on a surface of at least one of the p-type layers. Utilizing the disclosed structure and methods, a device capable of emitting light over a wide spectrum may be made without the use of phosphor materials.


Patent
RoseStreet Labs Energy LLC | Date: 2011-10-17

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.


An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V

Discover hidden collaborations