Time filter

Source Type

Royal Oak, MI, United States

Ghilezan M.,Rose Cancer Institute

High dose rate (HDR) brachytherapy in intermediate and high-risk prostate cancer patients has started in the late eighties in Europe and the United States, as a boost combined with external beam radiation therapy, as an attractive method for dose escalation. The results of the first dose-escalation study performed at William Beaumont Hospital has established the safety and efficacy of this combined treatment approach. Likewise, this landmark study enabled a paradigm shift in the radiobiology of prostate cancer, demonstrating that the alpha/beta of prostate cancer was much lower than previously believed to be and therefore the sensitivity of this tumor model to higher-than-conventional doses per fraction led to a dramatic increase of hypofractionated treatment regimens, the object of significant clinical research efforts, currently under way. The excellent toxicity profile and clinical outcome of HDR boost combined treatment prompted investigators to expand HDR brachytherapy indications to low/intermediate prostate cancer patients as the sole treatment modality. The results, toxicity and a brief review of the literature for both HDR boost and HDR monotherapy will be presented.© 2012. Source

Ghilezan M.,Rose Cancer Institute | Martinez A.,Rose Cancer Institute | Gustason G.,Rose Cancer Institute | Krauss D.,Rose Cancer Institute | And 9 more authors.
International Journal of Radiation Oncology Biology Physics

Purpose: To report the toxicity profile of high-dose-rate (HDR)-brachytherapy (BT) as monotherapy in a Human Investigation Committee-approved study consisting of a single implant and two fractions (12 Gy × 2) for a total dose of 24 Gy, delivered within 1 day. The dose was subsequently increased to 27 Gy (13.5 Gy × 2) delivered in 1 day. We report the acute and early chronic genitourinary and gastrointestinal toxicity. Methods and Materials: A total of 173 patients were treated between December 2005 and July 2010. However, only the first 100 were part of the IRB-approved study and out of these, only 94 had a minimal follow-up of 6 months, representing the study population for this preliminary report. All patients had clinical Stage T2b or less (American Joint Committee on Cancer, 5th edition), Gleason score 6-7 (3+4), and prostate-specific antigen level of ≤12 ng/mL. Ultrasound-guided HDR-BT with real-time dosimetry was used. The prescription dose was 24 Gy for the first 50 patients and 27 Gy thereafter. The dosimetric goals and constraints were the same for the two dose groups. Toxicity was scored using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3. The highest toxicity scores encountered at any point during follow-up are reported. Results: The median follow-up was 17 months (range, 6-40.5). Most patients had Grade 0-1 acute toxicity. The Grade 2 acute genitourinary toxicity was mainly frequency/urgency (13%), dysuria (5%), hematuria, and dribbling/hesitancy (2%). None of the patients required a Foley catheter at any time; however, 8% of the patients experienced transient Grade 1 diarrhea. No other acute gastrointestinal toxicities were found. The most common chronic toxicity was Grade 2 urinary frequency/urgency in 16% of patients followed by dysuria in 4% of patients; 2 patients had Grade 2 rectal bleeding and 1 had Grade 4, requiring laser treatment. Conclusions: Favorable-risk prostate cancer patients treated with a single implant HDR-BT to 24-27 Gy in two fractions within 1 day have excellent tolerance with minimal acute and chronic toxicity. Longer follow-up is needed to confirm these encouraging early results. © 2012 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations